metadata
base_model: mini1013/master_domain
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: >-
AHC 프라임 엑스퍼트 EX인텐스 크림 50ml (#M)위메프 > 뷰티 > 스킨케어 > 크림 > 수분크림 위메프 > 뷰티 >
스킨케어 > 크림 > 아이크림
- text: >-
망고씨드 보습 토너 3개 MinSellAmount (#M)화장품/향수>스킨케어>스킨/토너 Gmarket > 뷰티 > 화장품/향수 >
스킨케어 > 스킨/토너
- text: >-
1+1 리르 아이래쉬 에센스 골드/속눈썹 영양제 아이래쉬골드2개 (#M)SSG.COM/메이크업/아이메이크업/마스카라 ssg > 뷰티
> 메이크업 > 아이메이크업 > 마스카라
- text: >-
이니스프리 그린티 히아루론산 스킨 170ml (#M)11st>스킨케어>스킨/토너>스킨/토너 11st > 뷰티 > 스킨케어 >
스킨/토너
- text: >-
(신세계강남점) 알뜰쇼핑 프레쉬 콤부차 페이셜 트리트먼트 에센스 250ml 세트 1.블랙티 콤부차 페이셜 트리트먼트 에센스 250ml
(#M)화장품/향수>스킨케어>에센스/세럼 Gmarket > 뷰티 > 화장품/향수 > 스킨케어 > 에센스/세럼
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: accuracy
value: 0.856425702811245
name: Accuracy
SetFit with mini1013/master_domain
This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: mini1013/master_domain
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 12 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
10 |
|
8 |
|
1 |
|
6 |
|
5 |
|
9 |
|
4 |
|
0 |
|
7 |
|
11 |
|
3 |
|
2 |
|
Evaluation
Metrics
Label | Accuracy |
---|---|
all | 0.8564 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_bt8_test_flat_top_cate")
# Run inference
preds = model("이니스프리 그린티 히아루론산 스킨 170ml (#M)11st>스킨케어>스킨/토너>스킨/토너 11st > 뷰티 > 스킨케어 > 스킨/토너")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 11 | 21.3533 | 91 |
Label | Training Sample Count |
---|---|
0 | 50 |
1 | 50 |
2 | 50 |
3 | 50 |
4 | 50 |
5 | 50 |
6 | 50 |
7 | 50 |
8 | 50 |
9 | 50 |
10 | 50 |
11 | 50 |
Training Hyperparameters
- batch_size: (64, 64)
- num_epochs: (30, 30)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 100
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0011 | 1 | 0.4885 | - |
0.0533 | 50 | 0.4311 | - |
0.1066 | 100 | 0.4411 | - |
0.1599 | 150 | 0.4294 | - |
0.2132 | 200 | 0.4077 | - |
0.2665 | 250 | 0.3743 | - |
0.3198 | 300 | 0.3641 | - |
0.3731 | 350 | 0.3248 | - |
0.4264 | 400 | 0.2792 | - |
0.4797 | 450 | 0.2499 | - |
0.5330 | 500 | 0.2344 | - |
0.5864 | 550 | 0.2272 | - |
0.6397 | 600 | 0.2236 | - |
0.6930 | 650 | 0.2168 | - |
0.7463 | 700 | 0.2108 | - |
0.7996 | 750 | 0.2072 | - |
0.8529 | 800 | 0.2057 | - |
0.9062 | 850 | 0.191 | - |
0.9595 | 900 | 0.1806 | - |
1.0128 | 950 | 0.1731 | - |
1.0661 | 1000 | 0.1661 | - |
1.1194 | 1050 | 0.1631 | - |
1.1727 | 1100 | 0.1562 | - |
1.2260 | 1150 | 0.1464 | - |
1.2793 | 1200 | 0.1406 | - |
1.3326 | 1250 | 0.1304 | - |
1.3859 | 1300 | 0.1298 | - |
1.4392 | 1350 | 0.116 | - |
1.4925 | 1400 | 0.1034 | - |
1.5458 | 1450 | 0.0993 | - |
1.5991 | 1500 | 0.0909 | - |
1.6525 | 1550 | 0.0882 | - |
1.7058 | 1600 | 0.0868 | - |
1.7591 | 1650 | 0.0808 | - |
1.8124 | 1700 | 0.0752 | - |
1.8657 | 1750 | 0.0717 | - |
1.9190 | 1800 | 0.0652 | - |
1.9723 | 1850 | 0.0637 | - |
2.0256 | 1900 | 0.0638 | - |
2.0789 | 1950 | 0.06 | - |
2.1322 | 2000 | 0.0565 | - |
2.1855 | 2050 | 0.0513 | - |
2.2388 | 2100 | 0.0466 | - |
2.2921 | 2150 | 0.0435 | - |
2.3454 | 2200 | 0.0413 | - |
2.3987 | 2250 | 0.0358 | - |
2.4520 | 2300 | 0.0332 | - |
2.5053 | 2350 | 0.0299 | - |
2.5586 | 2400 | 0.0273 | - |
2.6119 | 2450 | 0.022 | - |
2.6652 | 2500 | 0.0232 | - |
2.7186 | 2550 | 0.0235 | - |
2.7719 | 2600 | 0.0258 | - |
2.8252 | 2650 | 0.0218 | - |
2.8785 | 2700 | 0.0228 | - |
2.9318 | 2750 | 0.0237 | - |
2.9851 | 2800 | 0.0205 | - |
3.0384 | 2850 | 0.0178 | - |
3.0917 | 2900 | 0.0191 | - |
3.1450 | 2950 | 0.018 | - |
3.1983 | 3000 | 0.0149 | - |
3.2516 | 3050 | 0.0087 | - |
3.3049 | 3100 | 0.0079 | - |
3.3582 | 3150 | 0.0072 | - |
3.4115 | 3200 | 0.0072 | - |
3.4648 | 3250 | 0.0073 | - |
3.5181 | 3300 | 0.0069 | - |
3.5714 | 3350 | 0.0064 | - |
3.6247 | 3400 | 0.0073 | - |
3.6780 | 3450 | 0.0069 | - |
3.7313 | 3500 | 0.0092 | - |
3.7846 | 3550 | 0.0068 | - |
3.8380 | 3600 | 0.007 | - |
3.8913 | 3650 | 0.0072 | - |
3.9446 | 3700 | 0.0092 | - |
3.9979 | 3750 | 0.0077 | - |
4.0512 | 3800 | 0.0073 | - |
4.1045 | 3850 | 0.0074 | - |
4.1578 | 3900 | 0.0071 | - |
4.2111 | 3950 | 0.0065 | - |
4.2644 | 4000 | 0.0074 | - |
4.3177 | 4050 | 0.0093 | - |
4.3710 | 4100 | 0.0086 | - |
4.4243 | 4150 | 0.0056 | - |
4.4776 | 4200 | 0.0066 | - |
4.5309 | 4250 | 0.0068 | - |
4.5842 | 4300 | 0.0048 | - |
4.6375 | 4350 | 0.0031 | - |
4.6908 | 4400 | 0.0025 | - |
4.7441 | 4450 | 0.0018 | - |
4.7974 | 4500 | 0.0014 | - |
4.8507 | 4550 | 0.0014 | - |
4.9041 | 4600 | 0.0012 | - |
4.9574 | 4650 | 0.004 | - |
5.0107 | 4700 | 0.0052 | - |
5.0640 | 4750 | 0.0053 | - |
5.1173 | 4800 | 0.0076 | - |
5.1706 | 4850 | 0.0086 | - |
5.2239 | 4900 | 0.0078 | - |
5.2772 | 4950 | 0.0066 | - |
5.3305 | 5000 | 0.0059 | - |
5.3838 | 5050 | 0.007 | - |
5.4371 | 5100 | 0.0025 | - |
5.4904 | 5150 | 0.0002 | - |
5.5437 | 5200 | 0.0001 | - |
5.5970 | 5250 | 0.0001 | - |
5.6503 | 5300 | 0.0001 | - |
5.7036 | 5350 | 0.0003 | - |
5.7569 | 5400 | 0.0001 | - |
5.8102 | 5450 | 0.0 | - |
5.8635 | 5500 | 0.0 | - |
5.9168 | 5550 | 0.0001 | - |
5.9701 | 5600 | 0.0002 | - |
6.0235 | 5650 | 0.0008 | - |
6.0768 | 5700 | 0.0018 | - |
6.1301 | 5750 | 0.0009 | - |
6.1834 | 5800 | 0.0001 | - |
6.2367 | 5850 | 0.0001 | - |
6.2900 | 5900 | 0.0 | - |
6.3433 | 5950 | 0.0 | - |
6.3966 | 6000 | 0.0 | - |
6.4499 | 6050 | 0.0 | - |
6.5032 | 6100 | 0.0 | - |
6.5565 | 6150 | 0.0 | - |
6.6098 | 6200 | 0.0 | - |
6.6631 | 6250 | 0.0 | - |
6.7164 | 6300 | 0.0 | - |
6.7697 | 6350 | 0.0 | - |
6.8230 | 6400 | 0.0 | - |
6.8763 | 6450 | 0.0 | - |
6.9296 | 6500 | 0.0 | - |
6.9829 | 6550 | 0.0 | - |
7.0362 | 6600 | 0.0 | - |
7.0896 | 6650 | 0.0 | - |
7.1429 | 6700 | 0.0 | - |
7.1962 | 6750 | 0.0 | - |
7.2495 | 6800 | 0.0002 | - |
7.3028 | 6850 | 0.0 | - |
7.3561 | 6900 | 0.0 | - |
7.4094 | 6950 | 0.0 | - |
7.4627 | 7000 | 0.0 | - |
7.5160 | 7050 | 0.0 | - |
7.5693 | 7100 | 0.0 | - |
7.6226 | 7150 | 0.0 | - |
7.6759 | 7200 | 0.0 | - |
7.7292 | 7250 | 0.0 | - |
7.7825 | 7300 | 0.0 | - |
7.8358 | 7350 | 0.0 | - |
7.8891 | 7400 | 0.0 | - |
7.9424 | 7450 | 0.0 | - |
7.9957 | 7500 | 0.0 | - |
8.0490 | 7550 | 0.0 | - |
8.1023 | 7600 | 0.0 | - |
8.1557 | 7650 | 0.0 | - |
8.2090 | 7700 | 0.0 | - |
8.2623 | 7750 | 0.0 | - |
8.3156 | 7800 | 0.0 | - |
8.3689 | 7850 | 0.0 | - |
8.4222 | 7900 | 0.0 | - |
8.4755 | 7950 | 0.0 | - |
8.5288 | 8000 | 0.0 | - |
8.5821 | 8050 | 0.0 | - |
8.6354 | 8100 | 0.0 | - |
8.6887 | 8150 | 0.0008 | - |
8.7420 | 8200 | 0.0043 | - |
8.7953 | 8250 | 0.0055 | - |
8.8486 | 8300 | 0.0028 | - |
8.9019 | 8350 | 0.0021 | - |
8.9552 | 8400 | 0.0012 | - |
9.0085 | 8450 | 0.0006 | - |
9.0618 | 8500 | 0.0 | - |
9.1151 | 8550 | 0.0001 | - |
9.1684 | 8600 | 0.0 | - |
9.2217 | 8650 | 0.0002 | - |
9.2751 | 8700 | 0.0001 | - |
9.3284 | 8750 | 0.0 | - |
9.3817 | 8800 | 0.0001 | - |
9.4350 | 8850 | 0.0001 | - |
9.4883 | 8900 | 0.0 | - |
9.5416 | 8950 | 0.001 | - |
9.5949 | 9000 | 0.0004 | - |
9.6482 | 9050 | 0.0002 | - |
9.7015 | 9100 | 0.0 | - |
9.7548 | 9150 | 0.0 | - |
9.8081 | 9200 | 0.0 | - |
9.8614 | 9250 | 0.0 | - |
9.9147 | 9300 | 0.0 | - |
9.9680 | 9350 | 0.0 | - |
10.0213 | 9400 | 0.0 | - |
10.0746 | 9450 | 0.0 | - |
10.1279 | 9500 | 0.0001 | - |
10.1812 | 9550 | 0.0 | - |
10.2345 | 9600 | 0.0 | - |
10.2878 | 9650 | 0.0 | - |
10.3412 | 9700 | 0.0 | - |
10.3945 | 9750 | 0.0 | - |
10.4478 | 9800 | 0.0 | - |
10.5011 | 9850 | 0.0 | - |
10.5544 | 9900 | 0.0 | - |
10.6077 | 9950 | 0.0002 | - |
10.6610 | 10000 | 0.0 | - |
10.7143 | 10050 | 0.0 | - |
10.7676 | 10100 | 0.0 | - |
10.8209 | 10150 | 0.0 | - |
10.8742 | 10200 | 0.0 | - |
10.9275 | 10250 | 0.0 | - |
10.9808 | 10300 | 0.0 | - |
11.0341 | 10350 | 0.0 | - |
11.0874 | 10400 | 0.0 | - |
11.1407 | 10450 | 0.0 | - |
11.1940 | 10500 | 0.0 | - |
11.2473 | 10550 | 0.0 | - |
11.3006 | 10600 | 0.0 | - |
11.3539 | 10650 | 0.0 | - |
11.4072 | 10700 | 0.0 | - |
11.4606 | 10750 | 0.0 | - |
11.5139 | 10800 | 0.0002 | - |
11.5672 | 10850 | 0.0 | - |
11.6205 | 10900 | 0.0 | - |
11.6738 | 10950 | 0.0 | - |
11.7271 | 11000 | 0.0 | - |
11.7804 | 11050 | 0.0 | - |
11.8337 | 11100 | 0.0 | - |
11.8870 | 11150 | 0.0 | - |
11.9403 | 11200 | 0.0 | - |
11.9936 | 11250 | 0.0 | - |
12.0469 | 11300 | 0.0 | - |
12.1002 | 11350 | 0.0 | - |
12.1535 | 11400 | 0.0 | - |
12.2068 | 11450 | 0.0 | - |
12.2601 | 11500 | 0.0 | - |
12.3134 | 11550 | 0.0 | - |
12.3667 | 11600 | 0.0 | - |
12.4200 | 11650 | 0.0 | - |
12.4733 | 11700 | 0.0 | - |
12.5267 | 11750 | 0.0 | - |
12.5800 | 11800 | 0.0 | - |
12.6333 | 11850 | 0.0 | - |
12.6866 | 11900 | 0.0006 | - |
12.7399 | 11950 | 0.0006 | - |
12.7932 | 12000 | 0.0009 | - |
12.8465 | 12050 | 0.0023 | - |
12.8998 | 12100 | 0.0027 | - |
12.9531 | 12150 | 0.0019 | - |
13.0064 | 12200 | 0.0009 | - |
13.0597 | 12250 | 0.0011 | - |
13.1130 | 12300 | 0.0019 | - |
13.1663 | 12350 | 0.0006 | - |
13.2196 | 12400 | 0.0003 | - |
13.2729 | 12450 | 0.0001 | - |
13.3262 | 12500 | 0.0001 | - |
13.3795 | 12550 | 0.0003 | - |
13.4328 | 12600 | 0.0007 | - |
13.4861 | 12650 | 0.0002 | - |
13.5394 | 12700 | 0.0 | - |
13.5928 | 12750 | 0.0 | - |
13.6461 | 12800 | 0.0 | - |
13.6994 | 12850 | 0.0 | - |
13.7527 | 12900 | 0.0 | - |
13.8060 | 12950 | 0.0 | - |
13.8593 | 13000 | 0.0 | - |
13.9126 | 13050 | 0.0 | - |
13.9659 | 13100 | 0.0 | - |
14.0192 | 13150 | 0.0 | - |
14.0725 | 13200 | 0.0002 | - |
14.1258 | 13250 | 0.0 | - |
14.1791 | 13300 | 0.0 | - |
14.2324 | 13350 | 0.0 | - |
14.2857 | 13400 | 0.0 | - |
14.3390 | 13450 | 0.0011 | - |
14.3923 | 13500 | 0.0004 | - |
14.4456 | 13550 | 0.0002 | - |
14.4989 | 13600 | 0.0 | - |
14.5522 | 13650 | 0.0 | - |
14.6055 | 13700 | 0.0 | - |
14.6588 | 13750 | 0.0 | - |
14.7122 | 13800 | 0.0 | - |
14.7655 | 13850 | 0.0 | - |
14.8188 | 13900 | 0.0 | - |
14.8721 | 13950 | 0.0 | - |
14.9254 | 14000 | 0.0 | - |
14.9787 | 14050 | 0.0 | - |
15.0320 | 14100 | 0.0 | - |
15.0853 | 14150 | 0.0008 | - |
15.1386 | 14200 | 0.0008 | - |
15.1919 | 14250 | 0.0001 | - |
15.2452 | 14300 | 0.0 | - |
15.2985 | 14350 | 0.0 | - |
15.3518 | 14400 | 0.0 | - |
15.4051 | 14450 | 0.0 | - |
15.4584 | 14500 | 0.0 | - |
15.5117 | 14550 | 0.0 | - |
15.5650 | 14600 | 0.0 | - |
15.6183 | 14650 | 0.0 | - |
15.6716 | 14700 | 0.0 | - |
15.7249 | 14750 | 0.0 | - |
15.7783 | 14800 | 0.0 | - |
15.8316 | 14850 | 0.0 | - |
15.8849 | 14900 | 0.0 | - |
15.9382 | 14950 | 0.0 | - |
15.9915 | 15000 | 0.0 | - |
16.0448 | 15050 | 0.0 | - |
16.0981 | 15100 | 0.0 | - |
16.1514 | 15150 | 0.0 | - |
16.2047 | 15200 | 0.0 | - |
16.2580 | 15250 | 0.0 | - |
16.3113 | 15300 | 0.0 | - |
16.3646 | 15350 | 0.0 | - |
16.4179 | 15400 | 0.0 | - |
16.4712 | 15450 | 0.0 | - |
16.5245 | 15500 | 0.0 | - |
16.5778 | 15550 | 0.0 | - |
16.6311 | 15600 | 0.0 | - |
16.6844 | 15650 | 0.0 | - |
16.7377 | 15700 | 0.0 | - |
16.7910 | 15750 | 0.0 | - |
16.8443 | 15800 | 0.0 | - |
16.8977 | 15850 | 0.0 | - |
16.9510 | 15900 | 0.0 | - |
17.0043 | 15950 | 0.0 | - |
17.0576 | 16000 | 0.0 | - |
17.1109 | 16050 | 0.0 | - |
17.1642 | 16100 | 0.0 | - |
17.2175 | 16150 | 0.0 | - |
17.2708 | 16200 | 0.0 | - |
17.3241 | 16250 | 0.0 | - |
17.3774 | 16300 | 0.0 | - |
17.4307 | 16350 | 0.0 | - |
17.4840 | 16400 | 0.0 | - |
17.5373 | 16450 | 0.0004 | - |
17.5906 | 16500 | 0.0001 | - |
17.6439 | 16550 | 0.0 | - |
17.6972 | 16600 | 0.0002 | - |
17.7505 | 16650 | 0.0 | - |
17.8038 | 16700 | 0.0 | - |
17.8571 | 16750 | 0.0 | - |
17.9104 | 16800 | 0.0 | - |
17.9638 | 16850 | 0.0002 | - |
18.0171 | 16900 | 0.0 | - |
18.0704 | 16950 | 0.0 | - |
18.1237 | 17000 | 0.0 | - |
18.1770 | 17050 | 0.0 | - |
18.2303 | 17100 | 0.0 | - |
18.2836 | 17150 | 0.0 | - |
18.3369 | 17200 | 0.0 | - |
18.3902 | 17250 | 0.0 | - |
18.4435 | 17300 | 0.0 | - |
18.4968 | 17350 | 0.0 | - |
18.5501 | 17400 | 0.0 | - |
18.6034 | 17450 | 0.0 | - |
18.6567 | 17500 | 0.0 | - |
18.7100 | 17550 | 0.0 | - |
18.7633 | 17600 | 0.0 | - |
18.8166 | 17650 | 0.0 | - |
18.8699 | 17700 | 0.0001 | - |
18.9232 | 17750 | 0.0005 | - |
18.9765 | 17800 | 0.0003 | - |
19.0299 | 17850 | 0.0 | - |
19.0832 | 17900 | 0.0 | - |
19.1365 | 17950 | 0.0 | - |
19.1898 | 18000 | 0.0 | - |
19.2431 | 18050 | 0.0001 | - |
19.2964 | 18100 | 0.0001 | - |
19.3497 | 18150 | 0.0004 | - |
19.4030 | 18200 | 0.0 | - |
19.4563 | 18250 | 0.0 | - |
19.5096 | 18300 | 0.0 | - |
19.5629 | 18350 | 0.0 | - |
19.6162 | 18400 | 0.0 | - |
19.6695 | 18450 | 0.0 | - |
19.7228 | 18500 | 0.0003 | - |
19.7761 | 18550 | 0.0 | - |
19.8294 | 18600 | 0.0001 | - |
19.8827 | 18650 | 0.0 | - |
19.9360 | 18700 | 0.0 | - |
19.9893 | 18750 | 0.0 | - |
20.0426 | 18800 | 0.0 | - |
20.0959 | 18850 | 0.0 | - |
20.1493 | 18900 | 0.0003 | - |
20.2026 | 18950 | 0.0009 | - |
20.2559 | 19000 | 0.0 | - |
20.3092 | 19050 | 0.0004 | - |
20.3625 | 19100 | 0.0002 | - |
20.4158 | 19150 | 0.0 | - |
20.4691 | 19200 | 0.0 | - |
20.5224 | 19250 | 0.0002 | - |
20.5757 | 19300 | 0.0002 | - |
20.6290 | 19350 | 0.0 | - |
20.6823 | 19400 | 0.0 | - |
20.7356 | 19450 | 0.0 | - |
20.7889 | 19500 | 0.0 | - |
20.8422 | 19550 | 0.0 | - |
20.8955 | 19600 | 0.0 | - |
20.9488 | 19650 | 0.0 | - |
21.0021 | 19700 | 0.0 | - |
21.0554 | 19750 | 0.0 | - |
21.1087 | 19800 | 0.0 | - |
21.1620 | 19850 | 0.0 | - |
21.2154 | 19900 | 0.0 | - |
21.2687 | 19950 | 0.0 | - |
21.3220 | 20000 | 0.0 | - |
21.3753 | 20050 | 0.0 | - |
21.4286 | 20100 | 0.0 | - |
21.4819 | 20150 | 0.0 | - |
21.5352 | 20200 | 0.0 | - |
21.5885 | 20250 | 0.0 | - |
21.6418 | 20300 | 0.0 | - |
21.6951 | 20350 | 0.0 | - |
21.7484 | 20400 | 0.0 | - |
21.8017 | 20450 | 0.0 | - |
21.8550 | 20500 | 0.0 | - |
21.9083 | 20550 | 0.0 | - |
21.9616 | 20600 | 0.0 | - |
22.0149 | 20650 | 0.0 | - |
22.0682 | 20700 | 0.0 | - |
22.1215 | 20750 | 0.0 | - |
22.1748 | 20800 | 0.0 | - |
22.2281 | 20850 | 0.0 | - |
22.2814 | 20900 | 0.0 | - |
22.3348 | 20950 | 0.0002 | - |
22.3881 | 21000 | 0.0 | - |
22.4414 | 21050 | 0.0 | - |
22.4947 | 21100 | 0.0 | - |
22.5480 | 21150 | 0.0 | - |
22.6013 | 21200 | 0.0 | - |
22.6546 | 21250 | 0.0 | - |
22.7079 | 21300 | 0.0 | - |
22.7612 | 21350 | 0.0 | - |
22.8145 | 21400 | 0.0 | - |
22.8678 | 21450 | 0.0 | - |
22.9211 | 21500 | 0.0 | - |
22.9744 | 21550 | 0.0 | - |
23.0277 | 21600 | 0.0 | - |
23.0810 | 21650 | 0.0 | - |
23.1343 | 21700 | 0.0 | - |
23.1876 | 21750 | 0.0 | - |
23.2409 | 21800 | 0.0002 | - |
23.2942 | 21850 | 0.0 | - |
23.3475 | 21900 | 0.0002 | - |
23.4009 | 21950 | 0.0 | - |
23.4542 | 22000 | 0.0 | - |
23.5075 | 22050 | 0.0 | - |
23.5608 | 22100 | 0.0 | - |
23.6141 | 22150 | 0.0 | - |
23.6674 | 22200 | 0.0 | - |
23.7207 | 22250 | 0.0 | - |
23.7740 | 22300 | 0.0 | - |
23.8273 | 22350 | 0.0 | - |
23.8806 | 22400 | 0.0 | - |
23.9339 | 22450 | 0.0 | - |
23.9872 | 22500 | 0.0 | - |
24.0405 | 22550 | 0.0 | - |
24.0938 | 22600 | 0.0 | - |
24.1471 | 22650 | 0.0 | - |
24.2004 | 22700 | 0.0 | - |
24.2537 | 22750 | 0.0 | - |
24.3070 | 22800 | 0.0 | - |
24.3603 | 22850 | 0.0 | - |
24.4136 | 22900 | 0.0 | - |
24.4670 | 22950 | 0.0 | - |
24.5203 | 23000 | 0.0 | - |
24.5736 | 23050 | 0.0 | - |
24.6269 | 23100 | 0.0 | - |
24.6802 | 23150 | 0.0 | - |
24.7335 | 23200 | 0.0 | - |
24.7868 | 23250 | 0.0 | - |
24.8401 | 23300 | 0.0 | - |
24.8934 | 23350 | 0.0 | - |
24.9467 | 23400 | 0.0 | - |
25.0 | 23450 | 0.0 | - |
25.0533 | 23500 | 0.0 | - |
25.1066 | 23550 | 0.0 | - |
25.1599 | 23600 | 0.0 | - |
25.2132 | 23650 | 0.0 | - |
25.2665 | 23700 | 0.0 | - |
25.3198 | 23750 | 0.0 | - |
25.3731 | 23800 | 0.0 | - |
25.4264 | 23850 | 0.0 | - |
25.4797 | 23900 | 0.0 | - |
25.5330 | 23950 | 0.0 | - |
25.5864 | 24000 | 0.0 | - |
25.6397 | 24050 | 0.0 | - |
25.6930 | 24100 | 0.0 | - |
25.7463 | 24150 | 0.0 | - |
25.7996 | 24200 | 0.0 | - |
25.8529 | 24250 | 0.0 | - |
25.9062 | 24300 | 0.0 | - |
25.9595 | 24350 | 0.0 | - |
26.0128 | 24400 | 0.0 | - |
26.0661 | 24450 | 0.0 | - |
26.1194 | 24500 | 0.0 | - |
26.1727 | 24550 | 0.0 | - |
26.2260 | 24600 | 0.0 | - |
26.2793 | 24650 | 0.0 | - |
26.3326 | 24700 | 0.0 | - |
26.3859 | 24750 | 0.0 | - |
26.4392 | 24800 | 0.0 | - |
26.4925 | 24850 | 0.0 | - |
26.5458 | 24900 | 0.0 | - |
26.5991 | 24950 | 0.0 | - |
26.6525 | 25000 | 0.0 | - |
26.7058 | 25050 | 0.0 | - |
26.7591 | 25100 | 0.0 | - |
26.8124 | 25150 | 0.0 | - |
26.8657 | 25200 | 0.0 | - |
26.9190 | 25250 | 0.0 | - |
26.9723 | 25300 | 0.0 | - |
27.0256 | 25350 | 0.0 | - |
27.0789 | 25400 | 0.0 | - |
27.1322 | 25450 | 0.0 | - |
27.1855 | 25500 | 0.0 | - |
27.2388 | 25550 | 0.0 | - |
27.2921 | 25600 | 0.0 | - |
27.3454 | 25650 | 0.0 | - |
27.3987 | 25700 | 0.0 | - |
27.4520 | 25750 | 0.0 | - |
27.5053 | 25800 | 0.0 | - |
27.5586 | 25850 | 0.0 | - |
27.6119 | 25900 | 0.0 | - |
27.6652 | 25950 | 0.0 | - |
27.7186 | 26000 | 0.0 | - |
27.7719 | 26050 | 0.0 | - |
27.8252 | 26100 | 0.0 | - |
27.8785 | 26150 | 0.0 | - |
27.9318 | 26200 | 0.0 | - |
27.9851 | 26250 | 0.0 | - |
28.0384 | 26300 | 0.0 | - |
28.0917 | 26350 | 0.0 | - |
28.1450 | 26400 | 0.0 | - |
28.1983 | 26450 | 0.0 | - |
28.2516 | 26500 | 0.0 | - |
28.3049 | 26550 | 0.0 | - |
28.3582 | 26600 | 0.0 | - |
28.4115 | 26650 | 0.0 | - |
28.4648 | 26700 | 0.0 | - |
28.5181 | 26750 | 0.0 | - |
28.5714 | 26800 | 0.0 | - |
28.6247 | 26850 | 0.0 | - |
28.6780 | 26900 | 0.0 | - |
28.7313 | 26950 | 0.0 | - |
28.7846 | 27000 | 0.0 | - |
28.8380 | 27050 | 0.0 | - |
28.8913 | 27100 | 0.0 | - |
28.9446 | 27150 | 0.0 | - |
28.9979 | 27200 | 0.0 | - |
29.0512 | 27250 | 0.0 | - |
29.1045 | 27300 | 0.0 | - |
29.1578 | 27350 | 0.0 | - |
29.2111 | 27400 | 0.0 | - |
29.2644 | 27450 | 0.0 | - |
29.3177 | 27500 | 0.0 | - |
29.3710 | 27550 | 0.0 | - |
29.4243 | 27600 | 0.0 | - |
29.4776 | 27650 | 0.0 | - |
29.5309 | 27700 | 0.0 | - |
29.5842 | 27750 | 0.0 | - |
29.6375 | 27800 | 0.0 | - |
29.6908 | 27850 | 0.0 | - |
29.7441 | 27900 | 0.0 | - |
29.7974 | 27950 | 0.0 | - |
29.8507 | 28000 | 0.0 | - |
29.9041 | 28050 | 0.0 | - |
29.9574 | 28100 | 0.0 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0
- Sentence Transformers: 3.3.1
- Transformers: 4.44.2
- PyTorch: 2.2.0a0+81ea7a4
- Datasets: 3.2.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}