metadata
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 신일 SVC-D500SR 무선청소기 싸이클론 유선형 이동식 본체 디자인 그린 워너비템
- text: >-
[더트데빌 퀵플립플러스] 16V 리튬 무선 핸디청소기 (113년 전통/차량용/가정용/사무실/책상용/원룸/오피스텔)
(주)비즈온플레이스
- text: 신일전자 핸디형 무선 청소기 SVC-C27KP 차량용 가정용 소형청소기 원룸 새봄전자
- text: 더트데빌 플립아웃 20V 리튬 무선 핸디청소기 (주)비즈온플레이스
- text: 홈마블 진공 무선 핸디 미니 소형 스틱 청소기 화이트 씨엠케이(CMK)
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 0.8571428571428571
name: Metric
SetFit with mini1013/master_domain
This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: mini1013/master_domain
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 10 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
2 |
|
1 |
|
8 |
|
5 |
|
9 |
|
7 |
|
0 |
|
6 |
|
4 |
|
3 |
|
Evaluation
Metrics
Label | Metric |
---|---|
all | 0.8571 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_el19")
# Run inference
preds = model("더트데빌 플립아웃 20V 리튬 무선 핸디청소기 (주)비즈온플레이스")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 3 | 10.2791 | 18 |
Label | Training Sample Count |
---|---|
0 | 2 |
1 | 2 |
2 | 50 |
3 | 5 |
4 | 2 |
5 | 6 |
6 | 14 |
7 | 9 |
8 | 26 |
9 | 13 |
Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0476 | 1 | 0.4954 | - |
2.3810 | 50 | 0.0399 | - |
4.7619 | 100 | 0.0186 | - |
7.1429 | 150 | 0.0152 | - |
9.5238 | 200 | 0.0155 | - |
11.9048 | 250 | 0.0093 | - |
14.2857 | 300 | 0.0025 | - |
16.6667 | 350 | 0.0006 | - |
19.0476 | 400 | 0.0037 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}