Edit model card

SetFit with mini1013/master_domain

This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
3
  • '[PS4] NBA 2K24 코비 브라이언트 에디션 특전 바우처 有 오진상사(주)'
  • '닌텐도 스위치 둘이서 냥코 대전쟁 한글판 게임매니아'
  • '닌텐도 마리오 카트 8 디럭스 + 조이콘 휠 패키지 SWITCH 한글판 마리오카트8 디럭스 (+조이콘핸들 세트)_마리오카트8 (+핸들 2개 원형 네온) 주식회사 쇼핑랩스'
2
  • '[트러스트마스터] T80 Ferrari 488 GTB 에디션 주식회사 투비네트웍스글로벌'
  • '트러스트마스터 T300 페라리 Integral 레이싱휠 [PS5, PS4, PC지원] 주식회사 디에스샵(DS SHOP)'
  • '레이저코리아 울버린 V2 크로마 Wolverine V2 Chroma 게임 컨트롤러 (주)하이케이넷'
1
  • '[노리박스] 오락실 게임기 분리기통(고급DX팩) (주)에스와이에스리테일'
  • '[XBOX]마이크로 소프트 정식발매 X-BOX series X 1TB 새제품 다음텔레콤'
  • '노리박스 32인치 스탠드형 강화유리 오락실게임기 오락기 DX팩(3000게임/720P/3~4인지원) (주)노리박스게임연구소'
0
  • 'PC 삼국지 14 한글판 (스팀코드발송) (주) 디지털터치'
  • 'Wizard with a Gun 스팀 PC 뉴 어카운트 (정지X) / 기존계정 가능 기존 계정 스팀 유통할인'
  • '철권7 tekken7 PC/스팀 철권7 (코드48시이내발송) 전한수'
4
  • '한국 닌텐도 정품 게임기 스위치 신형 OLED+콘트라 로그콥스+액정강화유리세트 OLED 네온레드블루 색상_OLED본체+뉴슈퍼마리오U디럭스+강화유리 에이지씨'
  • '게임&워치 젤다의 전설 주식회사 손오공'
  • '닌텐도 스위치 라이트 옐로 동물의 숲 케이스 주식회사 손오공'

Evaluation

Metrics

Label Metric
all 0.7772

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_el3")
# Run inference
preds = model("[PS4] 색보이 빅 어드벤처  에이티게임(주)")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 5 10.7325 23
Label Training Sample Count
0 43
1 50
2 50
3 50
4 50

Training Hyperparameters

  • batch_size: (512, 512)
  • num_epochs: (20, 20)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 40
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0263 1 0.496 -
1.3158 50 0.1186 -
2.6316 100 0.0532 -
3.9474 150 0.0398 -
5.2632 200 0.0002 -
6.5789 250 0.0001 -
7.8947 300 0.0001 -
9.2105 350 0.0001 -
10.5263 400 0.0001 -
11.8421 450 0.0001 -
13.1579 500 0.0001 -
14.4737 550 0.0001 -
15.7895 600 0.0 -
17.1053 650 0.0001 -
18.4211 700 0.0001 -
19.7368 750 0.0 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0.dev0
  • Sentence Transformers: 3.1.1
  • Transformers: 4.46.1
  • PyTorch: 2.4.0+cu121
  • Datasets: 2.20.0
  • Tokenizers: 0.20.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}
Downloads last month
1,185
Safetensors
Model size
111M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for mini1013/master_cate_el3

Base model

klue/roberta-base
Finetuned
(71)
this model

Evaluation results