metadata
base_model: mini1013/master_domain
library_name: setfit
metrics:
- metric
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: 잔디엣지 화단 경계 가든 정원 마당 잔디 분리대 테두리 그린 15cm x 50m 블랙_15cm x 50m 엔비스토어
- text: >-
마늘부직포 20g 160cm x 400m 냉해 서리방지 농업용 양파 월동 비닐하우스 보온 서리방지 부직포 20g_210cmX400m
케이eng
- text: 단열 온실재배기 홈가드닝 정원 꽃 식물재배 월동준비 1.5x2x2m 2m폭5m길이2m높이(골격미포함) 달담상사
- text: 목단묘목 2-3지 겹꽃 노지월동 모란 개화주 오리지널 목단 46.동팡진 농업회사법인 세종식물원 주식회사
- text: 원형 동그라미 사각 타원형 화분받침 물받이 화분 받침대 민자 소 원형 민자_브라운_4호 영농사
inference: true
model-index:
- name: SetFit with mini1013/master_domain
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: Unknown
type: unknown
split: test
metrics:
- type: metric
value: 0.9584072003272877
name: Metric
SetFit with mini1013/master_domain
This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: mini1013/master_domain
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 11 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
0.0 |
|
4.0 |
|
8.0 |
|
9.0 |
|
6.0 |
|
1.0 |
|
3.0 |
|
7.0 |
|
10.0 |
|
2.0 |
|
5.0 |
|
Evaluation
Metrics
Label | Metric |
---|---|
all | 0.9584 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_lh22")
# Run inference
preds = model("원형 동그라미 사각 타원형 화분받침 물받이 화분 받침대 민자 소 원형 민자_브라운_4호 영농사")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 4 | 11.5982 | 25 |
Label | Training Sample Count |
---|---|
0.0 | 50 |
1.0 | 50 |
2.0 | 50 |
3.0 | 50 |
4.0 | 50 |
5.0 | 50 |
6.0 | 50 |
7.0 | 50 |
8.0 | 50 |
9.0 | 50 |
10.0 | 50 |
Training Hyperparameters
- batch_size: (512, 512)
- num_epochs: (20, 20)
- max_steps: -1
- sampling_strategy: oversampling
- num_iterations: 40
- body_learning_rate: (2e-05, 2e-05)
- head_learning_rate: 2e-05
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0116 | 1 | 0.4612 | - |
0.5814 | 50 | 0.3432 | - |
1.1628 | 100 | 0.1133 | - |
1.7442 | 150 | 0.0601 | - |
2.3256 | 200 | 0.0364 | - |
2.9070 | 250 | 0.0199 | - |
3.4884 | 300 | 0.0272 | - |
4.0698 | 350 | 0.01 | - |
4.6512 | 400 | 0.0023 | - |
5.2326 | 450 | 0.0118 | - |
5.8140 | 500 | 0.0097 | - |
6.3953 | 550 | 0.0098 | - |
6.9767 | 600 | 0.0128 | - |
7.5581 | 650 | 0.003 | - |
8.1395 | 700 | 0.0002 | - |
8.7209 | 750 | 0.0001 | - |
9.3023 | 800 | 0.0 | - |
9.8837 | 850 | 0.0 | - |
10.4651 | 900 | 0.0 | - |
11.0465 | 950 | 0.0 | - |
11.6279 | 1000 | 0.0 | - |
12.2093 | 1050 | 0.0 | - |
12.7907 | 1100 | 0.0 | - |
13.3721 | 1150 | 0.0 | - |
13.9535 | 1200 | 0.0001 | - |
14.5349 | 1250 | 0.0 | - |
15.1163 | 1300 | 0.0 | - |
15.6977 | 1350 | 0.0 | - |
16.2791 | 1400 | 0.0 | - |
16.8605 | 1450 | 0.0 | - |
17.4419 | 1500 | 0.0 | - |
18.0233 | 1550 | 0.0 | - |
18.6047 | 1600 | 0.0 | - |
19.1860 | 1650 | 0.0 | - |
19.7674 | 1700 | 0.0 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.1.0.dev0
- Sentence Transformers: 3.1.1
- Transformers: 4.46.1
- PyTorch: 2.4.0+cu121
- Datasets: 2.20.0
- Tokenizers: 0.20.0
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}