master_cate_lh7 / README.md
mini1013's picture
Push model using huggingface_hub.
2c08e6f verified
metadata
base_model: mini1013/master_domain
library_name: setfit
metrics:
  - metric
pipeline_tag: text-classification
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
widget:
  - text: SD 바이오 에스디 코드프리 당뇨검사지 4박스 200 (유효기간 2025 03월) 코드프리 200매+알콜솜 100 엠에스메디칼
  - text: 아큐첵 소프트클릭스 채혈기+채혈침 25 액티브 퍼포마 인스턴트 가이드 란셋 채혈바늘  주식회사 더에스지엠
  - text: 녹십자 혈당시험지 당뇨 시험지 그린닥터 50 시험지100매+체혈침100개 자재스토어
  - text: HL 지닥터 혈당시험지 100 /당뇨측정 검사지 스트립 1_지닥터 혈당시험지 100매+알콜솜100매 헬스라e프
  - text: >-
      비디 울트라파인 인슐린 주사기 1박스 100개 328821[31G 8mm 0.5ml]BD 펜니들 주사바늘 울트라파인2 BD 인슐린
      31G 6mm 0.5ml 1박스(324901) 더메디칼샵
inference: true
model-index:
  - name: SetFit with mini1013/master_domain
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: metric
            value: 0.9786747905559787
            name: Metric

SetFit with mini1013/master_domain

This is a SetFit model that can be used for Text Classification. This SetFit model uses mini1013/master_domain as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
1.0
  • '프리스타일 리브레 무채혈 연속혈당측정기(24년1월)얼라이브패치1매 거래명세서 광명헬스케어'
  • 'SD 코드프리 혈당측정기(측정기+채혈기+침10매+파우치)P 스토어알파'
  • '올메디쿠스 글루코닥터 탑 혈당계 AGM-4100+파우치+채혈기+채혈침 10개 엠에스메디칼'
2.0
  • '에스디 SD 코드프리 측정지
0.0
  • '비디 울트라파인 인슐린 주사기 1박스 100입 324901 [31G 6mm 0.5ml] BD 펜니들 주사바늘 울트라파인2 BD 인슐린 31G 8mm 3/10ml(0.5단위) 1박스(320440) 더메디칼샵'
  • 'BD 비디 울트라파인 인슐린 주사기 시린지 31G 6mm 1ml 324903 100입 주식회사 더에스지엠'
  • '정림 멸균 일회용 주사기 3cc 23g 25mm 100개입 멸균주사기 10cc 18G 38mm(100ea/pck) (주)케이디상사'

Evaluation

Metrics

Label Metric
all 0.9787

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("mini1013/master_cate_lh7")
# Run inference
preds = model("녹십자 혈당시험지 당뇨 시험지 그린닥터 50매 시험지100매+체혈침100개 자재스토어")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 4 9.62 21
Label Training Sample Count
0.0 50
1.0 50
2.0 50

Training Hyperparameters

  • batch_size: (512, 512)
  • num_epochs: (20, 20)
  • max_steps: -1
  • sampling_strategy: oversampling
  • num_iterations: 40
  • body_learning_rate: (2e-05, 2e-05)
  • head_learning_rate: 2e-05
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.0417 1 0.4565 -
2.0833 50 0.1836 -
4.1667 100 0.1645 -
6.25 150 0.0004 -
8.3333 200 0.0001 -
10.4167 250 0.0001 -
12.5 300 0.0 -
14.5833 350 0.0 -
16.6667 400 0.0 -
18.75 450 0.0 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.1.0.dev0
  • Sentence Transformers: 3.1.1
  • Transformers: 4.46.1
  • PyTorch: 2.4.0+cu121
  • Datasets: 2.20.0
  • Tokenizers: 0.20.0

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}