segmentation-RTVE / README.md
mirari's picture
End of training
808f5e1 verified
metadata
library_name: transformers
language:
  - spa
license: mit
base_model: pyannote/speaker-diarization-3.1
tags:
  - speaker-diarization
  - speaker-segmentation
  - generated_from_trainer
datasets:
  - diarizers-community/callhome
model-index:
  - name: speaker-segmentation-fine-tuned-callhome-spa
    results: []

speaker-segmentation-fine-tuned-callhome-spa

This model is a fine-tuned version of pyannote/speaker-diarization-3.1 on the diarizers-community/callhome dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5724
  • Der: 0.3391
  • False Alarm: 0.2612
  • Missed Detection: 0.0776
  • Confusion: 0.0003

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Der False Alarm Missed Detection Confusion
0.4184 1.0 230 0.4700 0.2893 0.2341 0.0546 0.0006
0.4075 2.0 460 0.5348 0.3197 0.2567 0.0625 0.0005
0.3941 3.0 690 0.5296 0.3134 0.2608 0.0525 0.0001
0.3902 4.0 920 0.5936 0.3624 0.2612 0.1009 0.0003
0.389 5.0 1150 0.5724 0.3391 0.2612 0.0776 0.0003

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.1
  • Datasets 3.0.1
  • Tokenizers 0.20.0