metadata
tags:
- spacy
- token-classification
language:
- da
model-index:
- name: da_ner
results:
- task:
name: NER
type: token-classification
metrics:
- name: NER Precision
type: precision
value: 0.9393939394
- name: NER Recall
type: recall
value: 0.9165571616
- name: NER F Score
type: f_score
value: 0.9278350515
Feature | Description |
---|---|
Name | da_ner |
Version | 0.0.0 |
spaCy | >=3.5.1,<3.6.0 |
Default Pipeline | tok2vec , ner |
Components | tok2vec , ner |
Vectors | 500000 keys, 20000 unique vectors (300 dimensions) |
Sources | n/a |
License | n/a |
Author | n/a |
Label Scheme
View label scheme (36 labels for 1 components)
Component | Labels |
---|---|
ner |
ADVERTISING , AMOUNTS_OF_THE_PRODUCT , AVAILABILITY , BRANDING , CUSTOMERS , DISCOUNTS_AND_OFFERS , DOCUMENTATION , EMPLOYEES , EXTERNAL_SUPPLIER , FACILITIES , FINANCING , HANDLING_OF_SERVICE , LEASING , LEGAL , LOCATIONS , LOCATION_IN_THE_STORE , LOGISTICS , MARKETING , MARKET_COVERAGE , MEDIA , MESSAGES , ORGANIZATIONAL_STRUCTURE , PAYMENT_TERMS , PR , PRICE , PRICE_STRATEGIES , PRODUCT_PROPERTIES , PRODUCT_TYPE , PRODUCT_WARRANTY , REFERENCES , RETURN_ON_INVESTMENT , SALES_PROCESS , SHOWROOM , THE_MANAGEMENT , UNIFORMITY_IN_DELIVERIES , USE_OF_THE_PRODUCT |
Accuracy
Type | Score |
---|---|
ENTS_F |
92.78 |
ENTS_P |
93.94 |
ENTS_R |
91.66 |
TOK2VEC_LOSS |
46222.48 |
NER_LOSS |
80475.28 |