Pixtral-12B-2409 / README.md
dailei.127
Minor typo changed vllm_model.model to llm
1178dba
|
raw
history blame
3.61 kB
metadata
license: apache-2.0
library_name: vllm

Pixtral-12B-0910

We still need to validate official evaluations with the below usage example.

...TODO

Usage

We recommend using Pixtral with the vLLM library.

Important: Make sure you have installed vLLM from source - more specifically make sure you have installed this commit (TODO). Also make sure you have mistral_common >= 1.4.0 installed:

pip install --upgrade mistral_common

Simple Example

from vllm import LLM
from vllm.sampling_params import SamplingParams

model_name = "mistralai/Pixtral-12B-2409"

sampling_params = SamplingParams(max_tokens=8192)

llm = LLM(model=model_name, tokenizer_mode="mistral", max_model_len=1024)

prompt = "Describe this image in one sentence."
image_url = "https://picsum.photos/id/237/200/300"

messages = [
    {
        "role": "user",
        "content": [{"type": "text", "text": prompt}, {"type": "image_url", "image_url": {"url": image_url}}]
    },
]

outputs = llm.chat(messages, sampling_params=sampling_params)

print(outputs[0].outputs[0].text)

Advanced Example

You can also pass multiple images per message and/or pass multi-turn conversations

from vllm import LLM
from vllm.sampling_params import SamplingParams

model_name = "mistralai/Pixtral-12B-2409"
max_img_per_msg = 5
max_tokens_per_img = 4096

sampling_params = SamplingParams(max_tokens=8192, temperature=0.7)
llm = LLM(model=model_name, tokenizer_mode="mistral", limit_mm_per_prompt={"image": max_img_per_msg}, max_num_batched_tokens=max_img_per_msg * max_tokens_per_img)

prompt = "Describe the following image."

url_1 = "https://huggingface.co/datasets/patrickvonplaten/random_img/resolve/main/yosemite.png"
url_2 = "https://picsum.photos/seed/picsum/200/300"
url_3 = "https://picsum.photos/id/32/512/512"

messages = [
    {
        "role": "user",
        "content": [{"type": "text", "text": prompt}, {"type": "image_url", "image_url": {"url": url_1}}, {"type": "image_url", "image_url": {"url": url_2}}],
    },
    {
        "role": "assistant",
        "content": "The images shows nature.",
    },
    {
        "role": "user",
        "content": "More details please and answer only in French!."
    },
    {
        "role": "user",
        "content": [{"type": "image_url", "image_url": {"url": url_3}}],
    }
]

outputs = llm.chat(messages=messages, sampling_params=sampling_params)
print(outputs[0].outputs[0].text)

Server

You can also use pixtral in a server/client setting.

  1. Spin up a server:
vllm serve mistralai/Pixtral-12B-2409 --tokenizer_mode mistral --limit_mm_per_prompt 'image=4' --max_num_batched_tokens 16384
  1. And ping the client:
curl --location 'http://<your-node-url>:8000/v1/chat/completions' \
--header 'Content-Type: application/json' \
--header 'Authorization: Bearer token' \
--data '{
    "model": "mistralai/Pixtral-12B-2409",
    "messages": [
      {
        "role": "user",
        "content": [
            {"type" : "text", "text": "Describe this image in detail please."},
            {"type": "image_url", "image_url": {"url": "https://s3.amazonaws.com/cms.ipressroom.com/338/files/201808/5b894ee1a138352221103195_A680%7Ejogging-edit/A680%7Ejogging-edit_hero.jpg"}},
            {"type" : "text", "text": "and this one as well. Answer in French."},
            {"type": "image_url", "image_url": {"url": "https://www.wolframcloud.com/obj/resourcesystem/images/a0e/a0ee3983-46c6-4c92-b85d-059044639928/6af8cfb971db031b.png"}}
        ]
      }
    ]
  }'