mitro99's picture
End of training
4a52217 verified
|
raw
history blame
2.98 kB
metadata
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
model-index:
  - name: distilhubert-finetuned-gtzan
    results:
      - task:
          name: Audio Classification
          type: audio-classification
        dataset:
          name: GTZAN
          type: marsyas/gtzan
          config: all
          split: train
          args: all
        metrics:
          - name: Accuracy
            type: accuracy
            value: 0.85

distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Accuracy: 0.85
  • Loss: 0.7531

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 4
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Accuracy Validation Loss
2.2849 1.0 14 0.17 2.2588
2.1931 1.99 28 0.47 2.0874
1.9194 2.99 42 0.58 1.8044
1.6351 3.98 56 0.61 1.5806
1.4473 4.98 70 0.71 1.3886
1.3131 5.97 84 0.7 1.2738
1.2141 6.97 98 0.72 1.1616
1.0657 7.96 112 0.74 1.1272
0.96 8.96 126 0.75 1.0251
0.8387 9.96 140 0.8 0.9364
0.8653 10.95 154 0.79 0.8858
0.7653 11.95 168 0.8 0.8233
0.7329 12.94 182 0.83 0.7982
0.675 13.94 196 0.81 0.8189
0.6174 14.93 210 0.82 0.8236
0.5714 16.0 225 0.82 0.7755
0.598 17.0 239 0.81 0.7511
0.5794 17.99 253 0.84 0.7553
0.589 18.99 267 0.85 0.7533
0.5717 19.91 280 0.85 0.7531

Framework versions

  • Transformers 4.36.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.16.1
  • Tokenizers 0.15.0