mitultiwari's picture
mitultiwari/mistral-7b-instruct-summarization-sft-2
1949e78 verified
---
license: apache-2.0
library_name: peft
tags:
- trl
- sft
- generated_from_trainer
datasets:
- generator
base_model: mistralai/Mistral-7B-Instruct-v0.2
model-index:
- name: mistral7binstruct_summarize
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# mistral7binstruct_summarize
This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.2](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.2) on the generator dataset.
It achieves the following results on the evaluation set:
- Loss: 1.7060
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: constant
- training_steps: 500
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:----:|:---------------:|
| 1.7472 | 0.22 | 25 | 1.5467 |
| 1.5628 | 0.43 | 50 | 1.4716 |
| 1.5515 | 0.65 | 75 | 1.4513 |
| 1.4966 | 0.87 | 100 | 1.4446 |
| 1.4953 | 1.09 | 125 | 1.4509 |
| 1.4828 | 1.3 | 150 | 1.4492 |
| 1.4245 | 1.52 | 175 | 1.4513 |
| 1.4047 | 1.74 | 200 | 1.4539 |
| 1.4715 | 1.96 | 225 | 1.4541 |
| 1.3183 | 2.17 | 250 | 1.4828 |
| 1.2847 | 2.39 | 275 | 1.4780 |
| 1.3934 | 2.61 | 300 | 1.4872 |
| 1.3141 | 2.83 | 325 | 1.4947 |
| 1.2404 | 3.04 | 350 | 1.5483 |
| 1.1593 | 3.26 | 375 | 1.5560 |
| 1.151 | 3.48 | 400 | 1.5593 |
| 1.1381 | 3.7 | 425 | 1.5506 |
| 1.2021 | 3.91 | 450 | 1.5614 |
| 0.9731 | 4.13 | 475 | 1.6335 |
| 0.9721 | 4.35 | 500 | 1.7060 |
### Framework versions
- PEFT 0.9.0
- Transformers 4.38.2
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2