Edit model card

mbert_trim_ende

该模型基于bert-base-multilingual-cased,使用TextPruner对词表进行裁剪,保留iwslt14德英数据集,用于测试bert-fused的翻译效果。 并且在iwslt14德英数据集上进行掩码语言模型微调,数据的拼接方式是: de, en, de[sep]en, en[sep]de。

Model Details

lang:德英 vocab_size: 119547 -> 21443 model_size: 682M -> 392M iwslt14 de_en BLEU: ?--- tags: - generated_from_trainer metrics: - accuracy model-index: - name: mbert_trim_ende results: []

mbert_trim_ende

This model is a fine-tuned version of miugod/mbert_trim_ende on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.8260
  • Accuracy: 0.8200

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 1.0
  • mixed_precision_training: Native AMP

Training results

Framework versions

  • Transformers 4.29.0.dev0
  • Pytorch 1.13.1+cu116
  • Datasets 2.11.0
  • Tokenizers 0.13.3
Downloads last month
4
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.