Edit model card

scibert-scivocab-uncased_pub_section

  • original model file name: textclassifer_scibert_scivocab_uncased_pubmed_full
  • This is a fine-tuned checkpoint of allenai/scibert_scivocab_uncased for document section text classification
  • possible document section classes are:BACKGROUND, CONCLUSIONS, METHODS, OBJECTIVE, RESULTS,

usage in python

install transformers as needed: pip install -U transformers

run the following, changing the example text to your use case:

from transformers import pipeline

model_tag = "ml4pubmed/scibert-scivocab-uncased_pub_section"
classifier = pipeline(
              'text-classification', 
              model=model_tag, 
            )
            
prompt = """
Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train.
"""

classifier(
    prompt,
) # classify the sentence

metadata

training_metrics

  • date_run: Apr-25-2022_t-03

  • huggingface_tag: allenai/scibert_scivocab_uncased

training_parameters

  • date_run: Apr-25-2022_t-03

  • huggingface_tag: allenai/scibert_scivocab_uncased

Downloads last month
10
Safetensors
Model size
110M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train ml4pubmed/scibert-scivocab-uncased_pub_section