Beagle14-7B / README.md
librarian-bot's picture
Librarian Bot: Add base_model metadata to model
aefcd91 verified
|
raw
history blame
3 kB
metadata
license: cc-by-nc-4.0
tags:
  - merge
  - mergekit
  - lazymergekit
  - fblgit/UNA-TheBeagle-7b-v1
  - argilla/distilabeled-Marcoro14-7B-slerp
base_model:
  - fblgit/UNA-TheBeagle-7b-v1
  - argilla/distilabeled-Marcoro14-7B-slerp

Beagle14-7B

Update 01/16/24: Check the DPO fine-tuned version of this model, NeuralBeagle14-7B (probably the best 7B model you can find)! πŸŽ‰

Beagle14-7B is a merge of the following models using LazyMergekit:

πŸ† Evaluation

The evaluation was performed using LLM AutoEval on Nous suite.

Model AGIEval GPT4All TruthfulQA Bigbench Average
Beagle14-7B 44.38 76.53 69.44 47.25 59.4
OpenHermes-2.5-Mistral-7B 42.75 72.99 52.99 40.94 52.42
NeuralHermes-2.5-Mistral-7B 43.67 73.24 55.37 41.76 53.51
Nous-Hermes-2-SOLAR-10.7B 47.79 74.69 55.92 44.84 55.81
Marcoro14-7B-slerp 44.66 76.24 64.15 45.64 57.67
CatMarcoro14-7B-slerp 45.21 75.91 63.81 47.31 58.06

🧩 Configuration

slices:
  - sources:
      - model: fblgit/UNA-TheBeagle-7b-v1
        layer_range: [0, 32]
      - model: argilla/distilabeled-Marcoro14-7B-slerp
        layer_range: [0, 32]
merge_method: slerp
base_model: fblgit/UNA-TheBeagle-7b-v1
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mlabonne/Beagle14-7B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])