mlabonne's picture
Update README.md
80fa801 verified
|
raw
history blame
6.57 kB
metadata
license: other
tags:
  - dpo
datasets:
  - mlabonne/orpo-dpo-mix-40k
model-index:
  - name: Daredevil-8B-abliterated-dpomix
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 69.28
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B-abliterated-dpomix
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 85.05
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B-abliterated-dpomix
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 69.1
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B-abliterated-dpomix
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 60
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B-abliterated-dpomix
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 78.69
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B-abliterated-dpomix
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 71.8
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=mlabonne/Daredevil-8B-abliterated-dpomix
          name: Open LLM Leaderboard

NeuralDaredevil-8B-abliterated

image/jpeg

This is a DPO fine-tune of mlabonne/Daredevil-8-abliterated, trained on one epoch of mlabonne/orpo-dpo-mix-40k. The DPO fine-tuning successfully recovers the performance loss due to the abliteration process, making it an excellent uncensored model.

πŸ”Ž Applications

NeuralDaredevil-8B-abliterated performs better than the Instruct model on my tests.

You can use it for any application that doesn't require alignment, like role-playing. Tested on LM Studio using the "Llama 3" preset.

⚑ Quantization

πŸ† Evaluation

Open LLM Leaderboard

NeuralDaredevil-8B is the best-performing uncensored 8B model on the Open LLM Leaderboard (MMLU score).

image/png

Nous

Evaluation performed using LLM AutoEval. See the entire leaderboard here.

Model Average AGIEval GPT4All TruthfulQA Bigbench
mlabonne/NeuralDaredevil-8B-abliterated πŸ“„ 55.87 43.73 73.6 59.36 46.8
mlabonne/Daredevil-8B πŸ“„ 55.87 44.13 73.52 59.05 46.77
mlabonne/Daredevil-8B-abliterated πŸ“„ 55.06 43.29 73.33 57.47 46.17
NousResearch/Hermes-2-Theta-Llama-3-8B πŸ“„ 54.28 43.9 72.62 56.36 44.23
openchat/openchat-3.6-8b-20240522 πŸ“„ 53.49 44.03 73.67 49.78 46.48
meta-llama/Meta-Llama-3-8B-Instruct πŸ“„ 51.34 41.22 69.86 51.65 42.64
meta-llama/Meta-Llama-3-8B πŸ“„ 45.42 31.1 69.95 43.91 36.7

🌳 Model family tree

image/png

πŸ’» Usage

!pip install -qU transformers accelerate

from transformers import AutoTokenizer
import transformers
import torch

model = "mlabonne/Daredevil-8B"
messages = [{"role": "user", "content": "What is a large language model?"}]

tokenizer = AutoTokenizer.from_pretrained(model)
prompt = tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
pipeline = transformers.pipeline(
    "text-generation",
    model=model,
    torch_dtype=torch.float16,
    device_map="auto",
)

outputs = pipeline(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])