|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- mlfoundations/dclm-baseline-1.0-parquet |
|
- bigcode/starcoderdata |
|
- open-web-math/open-web-math |
|
- allenai/dolma |
|
language: |
|
- en |
|
library_name: transformers |
|
--- |
|
PhoneLM-0.5B is a 0.5 billion parameter decoder-only language model pre-trained on 1.1 trillion tokens. |
|
|
|
## Usage |
|
```python |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
model_name = 'mllmTeam/PhoneLM-0.5B' |
|
model = AutoModelForCausalLM.from_pretrained(model_name, device_map='cuda', trust_remote_code=True) |
|
tokenizer = AutoTokenizer.from_pretrained(model_name) |
|
|
|
inp = tokenizer("Machine Learning is ", return_tensors="pt") |
|
inp = {k: v.to('cuda') for k, v in inp.items()} |
|
out = model.generate(**inp, |
|
max_length=256, |
|
do_sample=True, |
|
temperature=0.7, |
|
top_p=0.7 |
|
) |
|
text = tokenizer.decode(out[0], skip_special_tokens=True) |
|
print(text) |
|
``` |
|
|
|
## Model Details |
|
|
|
* **Developed by**: mllmTeam |
|
* **Model type**: `PhoneLM 0.5B` models are auto-regressive language models based on the transformer decoder architecture. |
|
* **Language(s)**: English |
|
* **Paper**: [PhoneLM Technical Report]() |
|
* **Library**: [PhoneLM](https://github.com/UbiquitousLearning/PhoneLM) |
|
|
|
### Model Architecture |
|
|
|
The model is a decoder-only transformer architecture with the following modifications: |
|
|
|
| Hidden Size | Layers | Heads | Sequence Length | |
|
|-------------|--------|-------|-----------------| |
|
| 1024 | 24 | 16 | 2048 | |
|
|
|
* **Position Embeddings**: Rotary Position Embeddings ([Su et al., 2021](https://arxiv.org/abs/2104.09864)) applied to the first 25% of head embedding dimensions for improved throughput following [Black et al. (2022)](https://arxiv.org/pdf/2204.06745.pdf). PhoneLM quantized the sin and cos values in Rotary Position Embeddings to 8-bit integers. |
|
* **Normalization**: LayerNorm ([Ba et al., 2016](https://arxiv.org/abs/1607.06450)) with learned bias terms as opposed to RMSNorm ([Zhang & Sennrich, 2019](https://arxiv.org/abs/1910.07467)). |
|
* **Biases**: We remove all bias terms from the feed-forward networks and multi-head self-attention layers, except for the biases of the query, key, and value projections ([Bai et al., 2023](https://arxiv.org/abs/2309.16609)). |
|
* **ReLU Activation Function**: ReLU([Glorot et al., 2011](https://proceedings.mlr.press/v15/glorot11a/glorot11a.pdf)) activation functions are adopted in feed-forward networks. |
|
* **Tokenizer**: We use the SmolLM([Allal et al., 2024](https://huggingface.co/blog/smollm))'s tokenizer with a vocabulary size of 49,152. |
|
|
|
## Training Dataset |
|
|
|
The training dataset PhoneLM used is comprised of a filtered mixture of open-source large-scale datasets available on the [HuggingFace Hub](https://huggingface.co/datasets): DCLM-baseline([Li et al., 2024](https://arxiv.org/abs/2406.11794)), StarCoder ([Li et al., 2023](https://arxiv.org/abs/2305.06161)), OpenWebMath ([Paster et al., 2023](https://arxiv.org/abs/2310.06786)) and Dolma ([Soldaini et al., 2024](https://aclanthology.org/2024.acl-long.840/)). |
|
|
|
## Evaluation Results |
|
| Model | HellaSwag | WinoGrande | PIQA | SciQ | BoolQ | ARC Easy | ARC Challenge | Average | |
|
|-----------|-----------|------------|------|------|-------|----------|---------------|---------| |
|
| **PhoneLM-0.5B** | **54.0** | **57.9** | **73.3** | **85.1** | **60.7** | **60.4** | **31.6** | **60.43** | |
|
| Pythia-410M | 40.6 | 53.7 | 66.9 | 72.4 | 60.3 | 45.9 | 24.5 | 52.04 | |
|
| OPT-350M | 36.8 | 52.3 | 64.3 | 68.5 | 57.6 | 40.1 | 23.7 | 49.04 | |
|
| BLOOM-560M | 36.9 | 51.7 | 65.0 | 71.7 | 53.3 | 41.8 | 23.7 | 49.16 | |
|
| MobiLlama-500M | 51.1 | 53.4 | 70.9 | 76.4 | 55.7 | 46.0 | 26.6 | 54.30 | |
|
| OpenELM-450M | 54.0 | 58.0 | 72.3 | 79.4 | 55.8 | 48.1 | 27.6 | 56.46 | |
|
| SmolLM-360M | 53.5 | 56.8 | 71.5 | 84.2 | 55.4 | 63.8 | 36.0 | 60.17 | |
|
| Qwen 1.5-500M | 49.2 | 55.7 | 69.5 | 82.5 | 49.5 | 52.3 | 29.4 | 55.44 | |
|
| Cerebras-GPT-590M | 32.3 | 49.8 | 62.8 | 68.2 | 59.2 | 41.2 | 23.5 | 48.14 | |
|
|
|
## License |
|
* This repository is released under the [Apache-2.0](https://huggingface.co/mllmTeam/PhoneLM-0.5B/blob/main/README.md) License. |
|
|
|
|
|
## Citation |
|
``` |
|
@misc{yi2024phonelmanefficientcapablesmall, |
|
title={PhoneLM:an Efficient and Capable Small Language Model Family through Principled Pre-training}, |
|
author={Rongjie Yi and Xiang Li and Weikai Xie and Zhenyan Lu and Chenghua Wang and Ao Zhou and Shangguang Wang and Xiwen Zhang and Mengwei Xu}, |
|
year={2024}, |
|
eprint={2411.05046}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL}, |
|
url={https://arxiv.org/abs/2411.05046}, |
|
} |
|
``` |