metadata
license: apache-2.0
datasets:
- mllmTeam/DroidCall
language:
- en
library_name: transformers
base_model:
- mllmTeam/PhoneLM-1.5B-Instruct
PhoneLM-1.5B-Call is a 1.5 billion parameter decoder-only language model, fined-turned from PhoneLM-1.5B-Instruct, used for Android intent calling.
Usage
from transformers import AutoTokenizer, AutoModelForCausalLM
model_name = 'mllmTeam/PhoneLM-1.5B-Call'
system_prompt = "You are an expert in composing functions."
user_message = """
Here is a list of functions:
Name:
web_search
Description:
Initiates a web search using the specified query.
This function starts a web search using the default search engine.
It opens the search results in the default web browser or appropriate search application.
Args:
query (str): The search string or keywords to be used for the web search.
engine (str): The search engine to use. Default is "baidu".
Possible values are: "baidu", "google"
Returns:
None
Example:
# Perform a simple web search
web_search("Python programming tutorials")
# Search for a phrase
web_search('"to be or not to be"')
# Search using a specific search engine
web_search("Python programming tutorials", "google")
Now my query is: Help me search the president of United State
"""
prompt = [
{"role": "system", "content": system_prompt},
{"role": "user", "content": user_message}
]
model = AutoModelForCausalLM.from_pretrained(model_name, device_map='cuda', trust_remote_code=True)
tokenizer = AutoTokenizer.from_pretrained(model_name)
input_text = tokenizer.apply_chat_template(prompt, tokenize=False, add_generation_prompt=True)
inp = tokenizer(input_text, return_tensors="pt")
inp = {k: v.to('cuda') for k, v in inp.items()}
out = model.generate(**inp,
max_length=1000,
do_sample=True,
temperature=0.7,
top_p=0.7
)
text = tokenizer.decode(out[0], skip_special_tokens=True)
print(text)
Model Details
- Developed by: mllmTeam
- Model type:
PhoneLM 1.5B
models are auto-regressive language models based on the transformer decoder architecture. - Language(s): English
- Paper: PhoneLM Technical Report
- Library: PhoneLM
Model Architecture
The model is a decoder-only transformer architecture with the following modifications:
Hidden Size | Layers | Heads | Sequence Length |
---|---|---|---|
2560 | 19 | 16 | 2048 |
- Position Embeddings: Rotary Position Embeddings (Su et al., 2021) applied to the first 25% of head embedding dimensions for improved throughput following Black et al. (2022). PhoneLM quantized the sin and cos values in Rotary Position Embeddings to 8-bit integers.
- Normalization: LayerNorm (Ba et al., 2016) with learned bias terms as opposed to RMSNorm (Zhang & Sennrich, 2019).
- Biases: We remove all bias terms from the feed-forward networks and multi-head self-attention layers, except for the biases of the query, key, and value projections (Bai et al., 2023).
- ReLU Activation Function: ReLU(Glorot et al., 2011) activation functions are adopted in feed-forward networks.
- Tokenizer: We use the SmolLM(Allal et al., 2024)'s tokenizer with a vocabulary size of 49,152.
LICENSE
- This repository is released under the Apache-2.0 License.