File size: 2,925 Bytes
5de7921
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d935b0c
5de7921
 
 
 
 
 
 
 
 
d935b0c
 
5de7921
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d935b0c
5de7921
 
 
 
 
 
d935b0c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5de7921
 
 
 
d935b0c
 
 
79e9943
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
---
license: apache-2.0
base_model: ntu-spml/distilhubert
tags:
- generated_from_trainer
datasets:
- marsyas/gtzan
metrics:
- accuracy
model-index:
- name: distilhubert-finetuned-gtzan
  results:
  - task:
      name: Audio Classification
      type: audio-classification
    dataset:
      name: GTZAN
      type: marsyas/gtzan
      config: all
      split: train
      args: all
    metrics:
    - name: Accuracy
      type: accuracy
      value: 0.87
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilhubert-finetuned-gtzan

This model is a fine-tuned version of [ntu-spml/distilhubert](https://huggingface.co/ntu-spml/distilhubert) on the GTZAN dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7565
- Accuracy: 0.87

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 2.1839        | 1.0   | 113  | 2.0630          | 0.41     |
| 1.5052        | 2.0   | 226  | 1.4029          | 0.57     |
| 1.144         | 3.0   | 339  | 0.9807          | 0.77     |
| 0.9971        | 4.0   | 452  | 0.8701          | 0.75     |
| 0.6168        | 5.0   | 565  | 0.7094          | 0.76     |
| 0.4665        | 6.0   | 678  | 0.5940          | 0.83     |
| 0.58          | 7.0   | 791  | 0.4763          | 0.86     |
| 0.1009        | 8.0   | 904  | 0.4859          | 0.87     |
| 0.1817        | 9.0   | 1017 | 0.5313          | 0.88     |
| 0.0467        | 10.0  | 1130 | 0.6114          | 0.86     |
| 0.0201        | 11.0  | 1243 | 0.6677          | 0.85     |
| 0.1188        | 12.0  | 1356 | 0.6934          | 0.87     |
| 0.0055        | 13.0  | 1469 | 0.7070          | 0.89     |
| 0.0046        | 14.0  | 1582 | 0.7601          | 0.87     |
| 0.0043        | 15.0  | 1695 | 0.7584          | 0.87     |
| 0.0033        | 16.0  | 1808 | 0.7588          | 0.86     |
| 0.0696        | 17.0  | 1921 | 0.7495          | 0.88     |
| 0.0028        | 18.0  | 2034 | 0.7535          | 0.87     |
| 0.0027        | 19.0  | 2147 | 0.7571          | 0.87     |
| 0.0028        | 20.0  | 2260 | 0.7565          | 0.87     |


### Framework versions

- Transformers 4.37.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0