metadata
license: wtfpl
language:
- en
- zh
- ja
- de
datasets:
- JosephusCheung/GuanacoDataset
- meta-math/MetaMathQA
- jondurbin/airoboros-3.1
- WizardLM/WizardLM_evol_instruct_V2_196k
- RyokoAI/ShareGPT52K
- RyokoAI/Fandom23K
- milashkaarshif/MoeGirlPedia_wikitext_raw_archive
- wikipedia
- wiki_lingua
- garage-bAInd/Open-Platypus
- LDJnr/Puffin
- BAAI/COIG
- TigerResearch/tigerbot-zhihu-zh-10k
- liwu/MNBVC
- teknium/openhermes
- CausalLM/Refined-Anime-Text
- microsoft/orca-math-word-problems-200k
- m-a-p/CodeFeedback-Filtered-Instruction
base_model: CausalLM/35b-beta-long
tags:
- mlx
mlx-community/CausalLM-35b-beta-long-4bit
The Model mlx-community/CausalLM-35b-beta-long-4bit was converted to MLX format from CausalLM/35b-beta-long using mlx-lm version 0.20.4.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/CausalLM-35b-beta-long-4bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)