Goekdeniz-Guelmez's picture
2f74224b51129971548c5b08bc2be7dadf8ba81dbe324308c403f27f3bd03603
61b9449 verified
|
raw
history blame
4.11 kB
metadata
base_model: Goekdeniz-Guelmez/Josiefied-Qwen2.5-14B-Instruct-abliterated-v4-Q4-mlx
language:
  - en
  - de
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen2.5-14B-Instruct/blob/main/LICENSE
pipeline_tag: text-generation
tags:
  - chat
  - mlx
  - mlx-my-repo
  - mlx
model-index:
  - name: Josiefied-Qwen2.5-14B-Instruct-abliterated-v4
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 82.92
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Goekdeniz-Guelmez/Josiefied-Qwen2.5-14B-Instruct-abliterated-v4
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 48.05
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Goekdeniz-Guelmez/Josiefied-Qwen2.5-14B-Instruct-abliterated-v4
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 0
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Goekdeniz-Guelmez/Josiefied-Qwen2.5-14B-Instruct-abliterated-v4
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 12.3
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Goekdeniz-Guelmez/Josiefied-Qwen2.5-14B-Instruct-abliterated-v4
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 13.15
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Goekdeniz-Guelmez/Josiefied-Qwen2.5-14B-Instruct-abliterated-v4
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 44.65
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Goekdeniz-Guelmez/Josiefied-Qwen2.5-14B-Instruct-abliterated-v4
          name: Open LLM Leaderboard

mlx-community/Josiefied-Qwen2.5-14B-Instruct-abliterated-v4-4-bit

The Model mlx-community/Josiefied-Qwen2.5-14B-Instruct-abliterated-v4-4-bit was converted to MLX format from Goekdeniz-Guelmez/Josiefied-Qwen2.5-14B-Instruct-abliterated-v4-Q4-mlx using mlx-lm version 0.18.2.

Use with mlx

pip install mlx-lm
from mlx_lm import load, generate

model, tokenizer = load("mlx-community/Josiefied-Qwen2.5-14B-Instruct-abliterated-v4-4-bit")

prompt="hello"

if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
    messages = [{"role": "user", "content": prompt}]
    prompt = tokenizer.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )

response = generate(model, tokenizer, prompt=prompt, verbose=True)