[WIP] Upload folder using huggingface_hub (multi-commit 5afa1f6bd3881eb72a0c08f7e20961d3ba57f20629f4efb12a7007b788c43bfa)

#1
README.md DELETED
@@ -1,33 +0,0 @@
1
- ---
2
- language:
3
- - multilingual
4
- library_name: transformers
5
- license: mit
6
- license_link: https://huggingface.co/microsoft/Phi-3.5-MoE-instruct/resolve/main/LICENSE
7
- pipeline_tag: text-generation
8
- tags:
9
- - nlp
10
- - code
11
- - mlx
12
- widget:
13
- - messages:
14
- - role: user
15
- content: Can you provide ways to eat combinations of bananas and dragonfruits?
16
- ---
17
-
18
- # mlx-community/Phi-3.5-MoE-instruct-4bit
19
-
20
- The Model [mlx-community/Phi-3.5-MoE-instruct-4bit](https://huggingface.co/mlx-community/Phi-3.5-MoE-instruct-4bit) was converted to MLX format from [microsoft/Phi-3.5-MoE-instruct](https://huggingface.co/microsoft/Phi-3.5-MoE-instruct) using mlx-lm version **0.17.1**.
21
-
22
- ## Use with mlx
23
-
24
- ```bash
25
- pip install mlx-lm
26
- ```
27
-
28
- ```python
29
- from mlx_lm import load, generate
30
-
31
- model, tokenizer = load("mlx-community/Phi-3.5-MoE-instruct-4bit")
32
- response = generate(model, tokenizer, prompt="hello", verbose=True)
33
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
added_tokens.json DELETED
@@ -1,13 +0,0 @@
1
- {
2
- "<|assistant|>": 32001,
3
- "<|endoftext|>": 32000,
4
- "<|end|>": 32007,
5
- "<|placeholder1|>": 32002,
6
- "<|placeholder2|>": 32003,
7
- "<|placeholder3|>": 32004,
8
- "<|placeholder4|>": 32005,
9
- "<|placeholder5|>": 32008,
10
- "<|placeholder6|>": 32009,
11
- "<|system|>": 32006,
12
- "<|user|>": 32010
13
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
config.json DELETED
@@ -1,181 +0,0 @@
1
- {
2
- "architectures": [
3
- "PhiMoEForCausalLM"
4
- ],
5
- "attention_bias": true,
6
- "attention_dropout": 0.0,
7
- "auto_map": {
8
- "AutoConfig": "configuration_phimoe.PhiMoEConfig",
9
- "AutoModelForCausalLM": "modeling_phimoe.PhiMoEForCausalLM"
10
- },
11
- "bos_token_id": 1,
12
- "eos_token_id": 32000,
13
- "hidden_act": "silu",
14
- "hidden_dropout": 0.0,
15
- "hidden_size": 4096,
16
- "initializer_range": 0.02,
17
- "input_jitter_noise": 0.01,
18
- "intermediate_size": 6400,
19
- "lm_head_bias": true,
20
- "max_position_embeddings": 131072,
21
- "model_type": "phimoe",
22
- "num_attention_heads": 32,
23
- "num_experts_per_tok": 2,
24
- "num_hidden_layers": 32,
25
- "num_key_value_heads": 8,
26
- "num_local_experts": 16,
27
- "original_max_position_embeddings": 4096,
28
- "output_router_logits": false,
29
- "quantization": {
30
- "group_size": 64,
31
- "bits": 4
32
- },
33
- "rms_norm_eps": 1e-05,
34
- "rope_scaling": {
35
- "long_factor": [
36
- 1.0199999809265137,
37
- 1.0299999713897705,
38
- 1.0399999618530273,
39
- 1.0499999523162842,
40
- 1.0499999523162842,
41
- 1.0499999523162842,
42
- 1.059999942779541,
43
- 1.059999942779541,
44
- 1.059999942779541,
45
- 1.059999942779541,
46
- 1.059999942779541,
47
- 1.059999942779541,
48
- 1.0999999046325684,
49
- 1.1799999475479126,
50
- 1.1799999475479126,
51
- 1.3700000047683716,
52
- 1.4899998903274536,
53
- 2.109999895095825,
54
- 2.8899998664855957,
55
- 3.9499998092651367,
56
- 4.299999713897705,
57
- 6.429999828338623,
58
- 8.09000015258789,
59
- 10.690000534057617,
60
- 12.050000190734863,
61
- 18.229999542236328,
62
- 18.84000015258789,
63
- 19.899999618530273,
64
- 21.420000076293945,
65
- 26.200000762939453,
66
- 34.28000259399414,
67
- 34.590003967285156,
68
- 38.730003356933594,
69
- 40.22000503540039,
70
- 42.54000473022461,
71
- 44.000003814697266,
72
- 47.590003967285156,
73
- 54.750003814697266,
74
- 56.19000244140625,
75
- 57.44000244140625,
76
- 57.4900016784668,
77
- 61.20000076293945,
78
- 61.540000915527344,
79
- 61.75,
80
- 61.779998779296875,
81
- 62.06999969482422,
82
- 63.11000061035156,
83
- 63.43000030517578,
84
- 63.560001373291016,
85
- 63.71000289916992,
86
- 63.92000198364258,
87
- 63.94000244140625,
88
- 63.94000244140625,
89
- 63.96000289916992,
90
- 63.980003356933594,
91
- 64.0300064086914,
92
- 64.0300064086914,
93
- 64.0300064086914,
94
- 64.04000854492188,
95
- 64.10000610351562,
96
- 64.19000244140625,
97
- 64.20999908447266,
98
- 64.75,
99
- 64.95999908447266
100
- ],
101
- "long_mscale": 1.243163121016122,
102
- "original_max_position_embeddings": 4096,
103
- "short_factor": [
104
- 1.0,
105
- 1.0399999618530273,
106
- 1.0399999618530273,
107
- 1.0399999618530273,
108
- 1.0499999523162842,
109
- 1.0499999523162842,
110
- 1.0499999523162842,
111
- 1.0499999523162842,
112
- 1.0499999523162842,
113
- 1.0499999523162842,
114
- 1.0499999523162842,
115
- 1.0499999523162842,
116
- 1.0499999523162842,
117
- 1.0499999523162842,
118
- 1.059999942779541,
119
- 1.059999942779541,
120
- 1.0699999332427979,
121
- 1.0699999332427979,
122
- 1.0699999332427979,
123
- 1.0699999332427979,
124
- 1.1399999856948853,
125
- 1.159999966621399,
126
- 1.159999966621399,
127
- 1.159999966621399,
128
- 1.159999966621399,
129
- 1.1799999475479126,
130
- 1.1999999284744263,
131
- 1.3199999332427979,
132
- 1.3399999141693115,
133
- 1.3499999046325684,
134
- 1.3999998569488525,
135
- 1.4799998998641968,
136
- 1.4999998807907104,
137
- 1.589999794960022,
138
- 1.6499998569488525,
139
- 1.71999990940094,
140
- 1.8999998569488525,
141
- 1.9099998474121094,
142
- 1.9099998474121094,
143
- 1.9899998903274536,
144
- 1.9999998807907104,
145
- 1.9999998807907104,
146
- 2.009999990463257,
147
- 2.009999990463257,
148
- 2.009999990463257,
149
- 2.009999990463257,
150
- 2.009999990463257,
151
- 2.009999990463257,
152
- 2.009999990463257,
153
- 2.009999990463257,
154
- 2.009999990463257,
155
- 2.009999990463257,
156
- 2.009999990463257,
157
- 2.009999990463257,
158
- 2.009999990463257,
159
- 2.009999990463257,
160
- 2.009999990463257,
161
- 2.009999990463257,
162
- 2.009999990463257,
163
- 2.0999999046325684,
164
- 2.319999933242798,
165
- 2.419999837875366,
166
- 2.5899999141693115,
167
- 2.7899999618530273
168
- ],
169
- "short_mscale": 1.243163121016122,
170
- "type": "longrope"
171
- },
172
- "rope_theta": 10000.0,
173
- "router_aux_loss_coef": 0.0,
174
- "router_jitter_noise": 0.01,
175
- "sliding_window": 131072,
176
- "tie_word_embeddings": false,
177
- "torch_dtype": "bfloat16",
178
- "transformers_version": "4.43.3",
179
- "use_cache": true,
180
- "vocab_size": 32064
181
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
configuration_phimoe.py DELETED
@@ -1,244 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- """ PyTorch Phi-MoE model."""
17
-
18
-
19
- from transformers.configuration_utils import PretrainedConfig
20
- from transformers.utils import logging
21
-
22
-
23
- logger = logging.get_logger(__name__)
24
-
25
-
26
- PHIMOE_PRETRAINED_CONFIG_ARCHIVE_MAP = {
27
- "microsoft/Phi-3.5-MoE-instruct": "https://huggingface.co/microsoft/Phi-3.5-MoE-instruct/resolve/main/config.json",
28
- }
29
-
30
- class PhiMoEConfig(PretrainedConfig):
31
- r"""
32
- This is the configuration class to store the configuration of a [`PhiMoEModel`]. It is used to instantiate a Phi-MoE
33
- model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
34
- defaults will yield a similar configuration to that of the
35
- [microsoft/Phi-3.5-MoE-instruct](https://huggingface.co/microsoft/Phi-3.5-MoE-instruct).
36
-
37
- Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
38
- documentation from [`PretrainedConfig`] for more information.
39
-
40
-
41
- Args:
42
- vocab_size (`int`, *optional*, defaults to 32064):
43
- Vocabulary size of the PhiMoE model. Defines the number of different tokens that can be represented by the
44
- `inputs_ids` passed when calling [`PhiMoEModel`]
45
- hidden_size (`int`, *optional*, defaults to 4096):
46
- Dimension of the hidden representations.
47
- intermediate_size (`int`, *optional*, defaults to 6400):
48
- Dimension of the MLP representations.
49
- num_hidden_layers (`int`, *optional*, defaults to 32):
50
- Number of hidden layers in the Transformer encoder.
51
- num_attention_heads (`int`, *optional*, defaults to 32):
52
- Number of attention heads for each attention layer in the Transformer encoder.
53
- num_key_value_heads (`int`, *optional*, defaults to 8):
54
- This is the number of key_value heads that should be used to implement Grouped Query Attention. If
55
- `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if
56
- `num_key_value_heads=1 the model will use Multi Query Attention (MQA) otherwise GQA is used. When
57
- converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed
58
- by meanpooling all the original heads within that group. For more details checkout [this
59
- paper](https://arxiv.org/pdf/2305.13245.pdf). If it is not specified, will default to `8`.
60
- hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
61
- The non-linear activation function (function or string) in the decoder.
62
- max_position_embeddings (`int`, *optional*, defaults to `4096*32`):
63
- The maximum sequence length that this model might ever be used with. Mixtral's sliding window attention
64
- allows sequence of up to 4096*32 tokens.
65
- initializer_range (`float`, *optional*, defaults to 0.02):
66
- The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
67
- rms_norm_eps (`float`, *optional*, defaults to 1e-05):
68
- The epsilon used by the rms normalization layers.
69
- use_cache (`bool`, *optional*, defaults to `True`):
70
- Whether or not the model should return the last key/values attentions (not used by all models). Only
71
- relevant if `config.is_decoder=True`.
72
- pad_token_id (`int`, *optional*):
73
- The id of the padding token.
74
- bos_token_id (`int`, *optional*, defaults to 1):
75
- The id of the "beginning-of-sequence" token.
76
- eos_token_id (`int`, *optional*, defaults to 2):
77
- The id of the "end-of-sequence" token.
78
- tie_word_embeddings (`bool`, *optional*, defaults to `False`):
79
- Whether the model's input and output word embeddings should be tied.
80
- rope_theta (`float`, *optional*, defaults to 10000.0):
81
- The base period of the RoPE embeddings.
82
- rope_scaling (`dict`, *optional*):
83
- The scaling strategy for the RoPE embeddings. If `None`, no scaling is applied. If a dictionary, it must
84
- contain the following keys: `type`, `short_factor`, `long_factor`, `short_mscale`, `long_mscale` and
85
- `original_max_position_embeddings`. The `type` must be `longrope`, the `short_mscale` and `long_scale` must
86
- be numbers, the `short_factor` and `long_factor` must be lists of numbers with the same length as half of
87
- the attention head size and the `original_max_position_embeddings` must be an integer.
88
- sliding_window (`int`, *optional*):
89
- Sliding window attention window size. If not specified, will default to `262144`.
90
- attention_dropout (`float`, *optional*, defaults to 0.0):
91
- The dropout ratio for the attention probabilities.
92
- num_experts_per_tok (`int`, *optional*, defaults to 2):
93
- The number of experts to root per-token, can be also interpreted as the `top-p` routing
94
- parameter
95
- num_local_experts (`int`, *optional*, defaults to 16):
96
- Number of experts per Sparse MLP layer.
97
- output_router_logits (`bool`, *optional*, defaults to `False`):
98
- Whether or not the router logits should be returned by the model. Enabeling this will also
99
- allow the model to output the auxiliary loss. See [here]() for more details
100
- router_aux_loss_coef (`float`, *optional*, defaults to 0.0):
101
- The aux loss factor for the total loss.
102
- router_jitter_noise (`float`, *optional*, defaults to 0.01):
103
- Amount of noise to add to the router.
104
-
105
- ```python
106
- >>> from transformers import PhiMoEModel, PhiMoEConfig
107
-
108
- >>> # Initializing a Phi-3 style configuration
109
- >>> configuration = PhiMoEConfig.from_pretrained("microsoft/Phi-3.5-MoE-instruct")
110
-
111
- >>> # Initializing a model from the configuration
112
- >>> model = PhiMoEModel(configuration)
113
-
114
- >>> # Accessing the model configuration
115
- >>> configuration = model.config
116
- ```"""
117
-
118
- model_type = "phimoe"
119
- keys_to_ignore_at_inference = ["past_key_values"]
120
-
121
- def __init__(
122
- self,
123
- vocab_size=32064,
124
- hidden_size=4096,
125
- intermediate_size=6400,
126
- num_hidden_layers=32,
127
- num_attention_heads=32,
128
- num_key_value_heads=8,
129
- hidden_act="silu",
130
- max_position_embeddings=4096 * 32,
131
- initializer_range=0.02,
132
- rms_norm_eps=1e-5,
133
- use_cache=True,
134
- pad_token_id=None,
135
- bos_token_id=1,
136
- eos_token_id=2,
137
- tie_word_embeddings=False,
138
- rope_theta=1e6,
139
- rope_scaling=None,
140
- sliding_window=None,
141
- attention_dropout=0.0,
142
- num_experts_per_tok=2,
143
- num_local_experts=16,
144
- output_router_logits=False,
145
- router_aux_loss_coef=0.001,
146
- router_jitter_noise=0.01,
147
- input_jitter_noise=0.0,
148
- attention_bias = False,
149
- lm_head_bias = False,
150
- **kwargs,
151
- ):
152
- self.vocab_size = vocab_size
153
- self.max_position_embeddings = max_position_embeddings
154
- self.hidden_size = hidden_size
155
- self.intermediate_size = intermediate_size
156
- self.num_hidden_layers = num_hidden_layers
157
- self.num_attention_heads = num_attention_heads
158
- self.sliding_window = sliding_window
159
- self.attention_bias = attention_bias
160
- self.lm_head_bias = lm_head_bias
161
- # for backward compatibility
162
- if num_key_value_heads is None:
163
- num_key_value_heads = num_attention_heads
164
-
165
- self.num_key_value_heads = num_key_value_heads
166
- self.hidden_act = hidden_act
167
- self.initializer_range = initializer_range
168
- self.rms_norm_eps = rms_norm_eps
169
- self.use_cache = use_cache
170
- self.rope_theta = rope_theta
171
- self.attention_dropout = attention_dropout
172
-
173
- self.num_experts_per_tok = num_experts_per_tok
174
- self.num_local_experts = num_local_experts
175
- self.output_router_logits = output_router_logits
176
- self.router_aux_loss_coef = router_aux_loss_coef
177
- self.router_jitter_noise = router_jitter_noise
178
- self.input_jitter_noise = input_jitter_noise
179
-
180
- self.rope_scaling = rope_scaling
181
- self._rope_scaling_validation()
182
-
183
- super().__init__(
184
- pad_token_id=pad_token_id,
185
- bos_token_id=bos_token_id,
186
- eos_token_id=eos_token_id,
187
- tie_word_embeddings=tie_word_embeddings,
188
- **kwargs,
189
- )
190
-
191
- def _rope_scaling_validation(self):
192
- """
193
- Validate the `rope_scaling` configuration.
194
- """
195
- if self.rope_scaling is None:
196
- return
197
-
198
- if not isinstance(self.rope_scaling, dict) or len(self.rope_scaling) != 6:
199
- raise ValueError(
200
- "`rope_scaling` must be a dictionary with three fields, `type`, `short_factor`, `long_factor`, "
201
- f"`short_mscale`, `long_mscale` and `original_max_position_embeddings`, got {self.rope_scaling}"
202
- )
203
- rope_scaling_type = self.rope_scaling.get("type", None)
204
- rope_scaling_short_factor = self.rope_scaling.get("short_factor", None)
205
- rope_scaling_long_factor = self.rope_scaling.get("long_factor", None)
206
- rope_scaling_short_mscale = self.rope_scaling.get("short_mscale", None)
207
- rope_scaling_long_mscale = self.rope_scaling.get("long_mscale", None)
208
- original_max_position_embeddings = self.rope_scaling.get("original_max_position_embeddings", None)
209
- if rope_scaling_type is None or rope_scaling_type not in ["longrope"]:
210
- raise ValueError(f"`rope_scaling`'s type field must be one of ['longrope'], got {rope_scaling_type}")
211
- if not (
212
- isinstance(rope_scaling_short_factor, list)
213
- and all(isinstance(x, (int, float)) for x in rope_scaling_short_factor)
214
- ):
215
- raise ValueError(
216
- f"`rope_scaling`'s short_factor field must be a list of numbers, got {rope_scaling_short_factor}"
217
- )
218
- if not len(rope_scaling_short_factor) == self.hidden_size // self.num_attention_heads // 2:
219
- raise ValueError(
220
- f"`rope_scaling`'s short_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_short_factor)}"
221
- )
222
- if not (
223
- isinstance(rope_scaling_long_factor, list)
224
- and all(isinstance(x, (int, float)) for x in rope_scaling_long_factor)
225
- ):
226
- raise ValueError(
227
- f"`rope_scaling`'s long_factor field must be a list of numbers, got {rope_scaling_long_factor}"
228
- )
229
- if not len(rope_scaling_long_factor) == self.hidden_size // self.num_attention_heads // 2:
230
- raise ValueError(
231
- f"`rope_scaling`'s long_factor field must have length {self.hidden_size // self.num_attention_heads // 2}, got {len(rope_scaling_long_factor)}"
232
- )
233
- if not isinstance(rope_scaling_short_mscale, (int, float)):
234
- raise ValueError(
235
- f"`rope_scaling`'s short_mscale field must be a number, got {rope_scaling_short_mscale}"
236
- )
237
- if not isinstance(rope_scaling_long_mscale, (int, float)):
238
- raise ValueError(
239
- f"`rope_scaling`'s long_mscale field must be a number, got {rope_scaling_long_mscale}"
240
- )
241
- if not isinstance(original_max_position_embeddings, int):
242
- raise ValueError(
243
- f"`rope_scaling`'s original_max_position_embeddings field must be an integer, got {original_max_position_embeddings}"
244
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
model-00001-of-00005.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:3cf23b7d299c0f9213a3b70bb87ab0d5b3bd7fd39d7db70ed81ffbeb32925f7b
3
- size 5217858186
 
 
 
 
model-00002-of-00005.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:992335845b0d7cb0c6fa7f45ea8753f4036d0c4f7db1f0d818e54c2948b5f8c3
3
- size 5356260188
 
 
 
 
model-00003-of-00005.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:56571c228196ce215b6bd87e3a873ab843c5f1a6161d8e79d37d9e1d5e693b4d
3
- size 5356260253
 
 
 
 
model-00004-of-00005.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:1af687ecaff75aeb3220775d7a88da7fd61daf383089cb9f99a44ac035dc0de0
3
- size 5368101077
 
 
 
 
model-00005-of-00005.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:4b480fd846e781e709f662e4d73006bc0e6a470053c4767f066a854bf73e40a5
3
- size 2256576087
 
 
 
 
model.safetensors.index.json DELETED
@@ -1,1040 +0,0 @@
1
- {
2
- "metadata": {
3
- "total_size": 23554931328
4
- },
5
- "weight_map": {
6
- "lm_head.bias": "model-00005-of-00005.safetensors",
7
- "lm_head.biases": "model-00005-of-00005.safetensors",
8
- "lm_head.scales": "model-00005-of-00005.safetensors",
9
- "lm_head.weight": "model-00005-of-00005.safetensors",
10
- "model.embed_tokens.biases": "model-00001-of-00005.safetensors",
11
- "model.embed_tokens.scales": "model-00001-of-00005.safetensors",
12
- "model.embed_tokens.weight": "model-00001-of-00005.safetensors",
13
- "model.layers.0.block_sparse_moe.gate.biases": "model-00001-of-00005.safetensors",
14
- "model.layers.0.block_sparse_moe.gate.scales": "model-00001-of-00005.safetensors",
15
- "model.layers.0.block_sparse_moe.gate.weight": "model-00001-of-00005.safetensors",
16
- "model.layers.0.block_sparse_moe.switch_mlp.down_proj.biases": "model-00001-of-00005.safetensors",
17
- "model.layers.0.block_sparse_moe.switch_mlp.down_proj.scales": "model-00001-of-00005.safetensors",
18
- "model.layers.0.block_sparse_moe.switch_mlp.down_proj.weight": "model-00001-of-00005.safetensors",
19
- "model.layers.0.block_sparse_moe.switch_mlp.gate_proj.biases": "model-00001-of-00005.safetensors",
20
- "model.layers.0.block_sparse_moe.switch_mlp.gate_proj.scales": "model-00001-of-00005.safetensors",
21
- "model.layers.0.block_sparse_moe.switch_mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
22
- "model.layers.0.block_sparse_moe.switch_mlp.up_proj.biases": "model-00001-of-00005.safetensors",
23
- "model.layers.0.block_sparse_moe.switch_mlp.up_proj.scales": "model-00001-of-00005.safetensors",
24
- "model.layers.0.block_sparse_moe.switch_mlp.up_proj.weight": "model-00001-of-00005.safetensors",
25
- "model.layers.0.input_layernorm.bias": "model-00001-of-00005.safetensors",
26
- "model.layers.0.input_layernorm.weight": "model-00001-of-00005.safetensors",
27
- "model.layers.0.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
28
- "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
29
- "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00005.safetensors",
30
- "model.layers.0.self_attn.k_proj.biases": "model-00001-of-00005.safetensors",
31
- "model.layers.0.self_attn.k_proj.scales": "model-00001-of-00005.safetensors",
32
- "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
33
- "model.layers.0.self_attn.o_proj.bias": "model-00001-of-00005.safetensors",
34
- "model.layers.0.self_attn.o_proj.biases": "model-00001-of-00005.safetensors",
35
- "model.layers.0.self_attn.o_proj.scales": "model-00001-of-00005.safetensors",
36
- "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
37
- "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
38
- "model.layers.0.self_attn.q_proj.biases": "model-00001-of-00005.safetensors",
39
- "model.layers.0.self_attn.q_proj.scales": "model-00001-of-00005.safetensors",
40
- "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
41
- "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
42
- "model.layers.0.self_attn.v_proj.biases": "model-00001-of-00005.safetensors",
43
- "model.layers.0.self_attn.v_proj.scales": "model-00001-of-00005.safetensors",
44
- "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
45
- "model.layers.1.block_sparse_moe.gate.biases": "model-00001-of-00005.safetensors",
46
- "model.layers.1.block_sparse_moe.gate.scales": "model-00001-of-00005.safetensors",
47
- "model.layers.1.block_sparse_moe.gate.weight": "model-00001-of-00005.safetensors",
48
- "model.layers.1.block_sparse_moe.switch_mlp.down_proj.biases": "model-00001-of-00005.safetensors",
49
- "model.layers.1.block_sparse_moe.switch_mlp.down_proj.scales": "model-00001-of-00005.safetensors",
50
- "model.layers.1.block_sparse_moe.switch_mlp.down_proj.weight": "model-00001-of-00005.safetensors",
51
- "model.layers.1.block_sparse_moe.switch_mlp.gate_proj.biases": "model-00001-of-00005.safetensors",
52
- "model.layers.1.block_sparse_moe.switch_mlp.gate_proj.scales": "model-00001-of-00005.safetensors",
53
- "model.layers.1.block_sparse_moe.switch_mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
54
- "model.layers.1.block_sparse_moe.switch_mlp.up_proj.biases": "model-00001-of-00005.safetensors",
55
- "model.layers.1.block_sparse_moe.switch_mlp.up_proj.scales": "model-00001-of-00005.safetensors",
56
- "model.layers.1.block_sparse_moe.switch_mlp.up_proj.weight": "model-00001-of-00005.safetensors",
57
- "model.layers.1.input_layernorm.bias": "model-00001-of-00005.safetensors",
58
- "model.layers.1.input_layernorm.weight": "model-00001-of-00005.safetensors",
59
- "model.layers.1.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
60
- "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
61
- "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00005.safetensors",
62
- "model.layers.1.self_attn.k_proj.biases": "model-00001-of-00005.safetensors",
63
- "model.layers.1.self_attn.k_proj.scales": "model-00001-of-00005.safetensors",
64
- "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
65
- "model.layers.1.self_attn.o_proj.bias": "model-00001-of-00005.safetensors",
66
- "model.layers.1.self_attn.o_proj.biases": "model-00001-of-00005.safetensors",
67
- "model.layers.1.self_attn.o_proj.scales": "model-00001-of-00005.safetensors",
68
- "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
69
- "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
70
- "model.layers.1.self_attn.q_proj.biases": "model-00001-of-00005.safetensors",
71
- "model.layers.1.self_attn.q_proj.scales": "model-00001-of-00005.safetensors",
72
- "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
73
- "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
74
- "model.layers.1.self_attn.v_proj.biases": "model-00001-of-00005.safetensors",
75
- "model.layers.1.self_attn.v_proj.scales": "model-00001-of-00005.safetensors",
76
- "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
77
- "model.layers.10.block_sparse_moe.gate.biases": "model-00002-of-00005.safetensors",
78
- "model.layers.10.block_sparse_moe.gate.scales": "model-00002-of-00005.safetensors",
79
- "model.layers.10.block_sparse_moe.gate.weight": "model-00002-of-00005.safetensors",
80
- "model.layers.10.block_sparse_moe.switch_mlp.down_proj.biases": "model-00002-of-00005.safetensors",
81
- "model.layers.10.block_sparse_moe.switch_mlp.down_proj.scales": "model-00002-of-00005.safetensors",
82
- "model.layers.10.block_sparse_moe.switch_mlp.down_proj.weight": "model-00002-of-00005.safetensors",
83
- "model.layers.10.block_sparse_moe.switch_mlp.gate_proj.biases": "model-00002-of-00005.safetensors",
84
- "model.layers.10.block_sparse_moe.switch_mlp.gate_proj.scales": "model-00002-of-00005.safetensors",
85
- "model.layers.10.block_sparse_moe.switch_mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
86
- "model.layers.10.block_sparse_moe.switch_mlp.up_proj.biases": "model-00002-of-00005.safetensors",
87
- "model.layers.10.block_sparse_moe.switch_mlp.up_proj.scales": "model-00002-of-00005.safetensors",
88
- "model.layers.10.block_sparse_moe.switch_mlp.up_proj.weight": "model-00002-of-00005.safetensors",
89
- "model.layers.10.input_layernorm.bias": "model-00002-of-00005.safetensors",
90
- "model.layers.10.input_layernorm.weight": "model-00002-of-00005.safetensors",
91
- "model.layers.10.post_attention_layernorm.bias": "model-00002-of-00005.safetensors",
92
- "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
93
- "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
94
- "model.layers.10.self_attn.k_proj.biases": "model-00002-of-00005.safetensors",
95
- "model.layers.10.self_attn.k_proj.scales": "model-00002-of-00005.safetensors",
96
- "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
97
- "model.layers.10.self_attn.o_proj.bias": "model-00002-of-00005.safetensors",
98
- "model.layers.10.self_attn.o_proj.biases": "model-00002-of-00005.safetensors",
99
- "model.layers.10.self_attn.o_proj.scales": "model-00002-of-00005.safetensors",
100
- "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
101
- "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
102
- "model.layers.10.self_attn.q_proj.biases": "model-00002-of-00005.safetensors",
103
- "model.layers.10.self_attn.q_proj.scales": "model-00002-of-00005.safetensors",
104
- "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
105
- "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
106
- "model.layers.10.self_attn.v_proj.biases": "model-00002-of-00005.safetensors",
107
- "model.layers.10.self_attn.v_proj.scales": "model-00002-of-00005.safetensors",
108
- "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
109
- "model.layers.11.block_sparse_moe.gate.biases": "model-00002-of-00005.safetensors",
110
- "model.layers.11.block_sparse_moe.gate.scales": "model-00002-of-00005.safetensors",
111
- "model.layers.11.block_sparse_moe.gate.weight": "model-00002-of-00005.safetensors",
112
- "model.layers.11.block_sparse_moe.switch_mlp.down_proj.biases": "model-00002-of-00005.safetensors",
113
- "model.layers.11.block_sparse_moe.switch_mlp.down_proj.scales": "model-00002-of-00005.safetensors",
114
- "model.layers.11.block_sparse_moe.switch_mlp.down_proj.weight": "model-00002-of-00005.safetensors",
115
- "model.layers.11.block_sparse_moe.switch_mlp.gate_proj.biases": "model-00002-of-00005.safetensors",
116
- "model.layers.11.block_sparse_moe.switch_mlp.gate_proj.scales": "model-00002-of-00005.safetensors",
117
- "model.layers.11.block_sparse_moe.switch_mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
118
- "model.layers.11.block_sparse_moe.switch_mlp.up_proj.biases": "model-00002-of-00005.safetensors",
119
- "model.layers.11.block_sparse_moe.switch_mlp.up_proj.scales": "model-00002-of-00005.safetensors",
120
- "model.layers.11.block_sparse_moe.switch_mlp.up_proj.weight": "model-00002-of-00005.safetensors",
121
- "model.layers.11.input_layernorm.bias": "model-00002-of-00005.safetensors",
122
- "model.layers.11.input_layernorm.weight": "model-00002-of-00005.safetensors",
123
- "model.layers.11.post_attention_layernorm.bias": "model-00002-of-00005.safetensors",
124
- "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
125
- "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
126
- "model.layers.11.self_attn.k_proj.biases": "model-00002-of-00005.safetensors",
127
- "model.layers.11.self_attn.k_proj.scales": "model-00002-of-00005.safetensors",
128
- "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
129
- "model.layers.11.self_attn.o_proj.bias": "model-00002-of-00005.safetensors",
130
- "model.layers.11.self_attn.o_proj.biases": "model-00002-of-00005.safetensors",
131
- "model.layers.11.self_attn.o_proj.scales": "model-00002-of-00005.safetensors",
132
- "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
133
- "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
134
- "model.layers.11.self_attn.q_proj.biases": "model-00002-of-00005.safetensors",
135
- "model.layers.11.self_attn.q_proj.scales": "model-00002-of-00005.safetensors",
136
- "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
137
- "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
138
- "model.layers.11.self_attn.v_proj.biases": "model-00002-of-00005.safetensors",
139
- "model.layers.11.self_attn.v_proj.scales": "model-00002-of-00005.safetensors",
140
- "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
141
- "model.layers.12.block_sparse_moe.gate.biases": "model-00002-of-00005.safetensors",
142
- "model.layers.12.block_sparse_moe.gate.scales": "model-00002-of-00005.safetensors",
143
- "model.layers.12.block_sparse_moe.gate.weight": "model-00002-of-00005.safetensors",
144
- "model.layers.12.block_sparse_moe.switch_mlp.down_proj.biases": "model-00002-of-00005.safetensors",
145
- "model.layers.12.block_sparse_moe.switch_mlp.down_proj.scales": "model-00002-of-00005.safetensors",
146
- "model.layers.12.block_sparse_moe.switch_mlp.down_proj.weight": "model-00002-of-00005.safetensors",
147
- "model.layers.12.block_sparse_moe.switch_mlp.gate_proj.biases": "model-00002-of-00005.safetensors",
148
- "model.layers.12.block_sparse_moe.switch_mlp.gate_proj.scales": "model-00002-of-00005.safetensors",
149
- "model.layers.12.block_sparse_moe.switch_mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
150
- "model.layers.12.block_sparse_moe.switch_mlp.up_proj.biases": "model-00002-of-00005.safetensors",
151
- "model.layers.12.block_sparse_moe.switch_mlp.up_proj.scales": "model-00002-of-00005.safetensors",
152
- "model.layers.12.block_sparse_moe.switch_mlp.up_proj.weight": "model-00002-of-00005.safetensors",
153
- "model.layers.12.input_layernorm.bias": "model-00002-of-00005.safetensors",
154
- "model.layers.12.input_layernorm.weight": "model-00002-of-00005.safetensors",
155
- "model.layers.12.post_attention_layernorm.bias": "model-00002-of-00005.safetensors",
156
- "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
157
- "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
158
- "model.layers.12.self_attn.k_proj.biases": "model-00002-of-00005.safetensors",
159
- "model.layers.12.self_attn.k_proj.scales": "model-00002-of-00005.safetensors",
160
- "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
161
- "model.layers.12.self_attn.o_proj.bias": "model-00002-of-00005.safetensors",
162
- "model.layers.12.self_attn.o_proj.biases": "model-00002-of-00005.safetensors",
163
- "model.layers.12.self_attn.o_proj.scales": "model-00002-of-00005.safetensors",
164
- "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
165
- "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
166
- "model.layers.12.self_attn.q_proj.biases": "model-00002-of-00005.safetensors",
167
- "model.layers.12.self_attn.q_proj.scales": "model-00002-of-00005.safetensors",
168
- "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
169
- "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
170
- "model.layers.12.self_attn.v_proj.biases": "model-00002-of-00005.safetensors",
171
- "model.layers.12.self_attn.v_proj.scales": "model-00002-of-00005.safetensors",
172
- "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
173
- "model.layers.13.block_sparse_moe.gate.biases": "model-00002-of-00005.safetensors",
174
- "model.layers.13.block_sparse_moe.gate.scales": "model-00002-of-00005.safetensors",
175
- "model.layers.13.block_sparse_moe.gate.weight": "model-00002-of-00005.safetensors",
176
- "model.layers.13.block_sparse_moe.switch_mlp.down_proj.biases": "model-00002-of-00005.safetensors",
177
- "model.layers.13.block_sparse_moe.switch_mlp.down_proj.scales": "model-00002-of-00005.safetensors",
178
- "model.layers.13.block_sparse_moe.switch_mlp.down_proj.weight": "model-00002-of-00005.safetensors",
179
- "model.layers.13.block_sparse_moe.switch_mlp.gate_proj.biases": "model-00002-of-00005.safetensors",
180
- "model.layers.13.block_sparse_moe.switch_mlp.gate_proj.scales": "model-00002-of-00005.safetensors",
181
- "model.layers.13.block_sparse_moe.switch_mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
182
- "model.layers.13.block_sparse_moe.switch_mlp.up_proj.biases": "model-00002-of-00005.safetensors",
183
- "model.layers.13.block_sparse_moe.switch_mlp.up_proj.scales": "model-00002-of-00005.safetensors",
184
- "model.layers.13.block_sparse_moe.switch_mlp.up_proj.weight": "model-00002-of-00005.safetensors",
185
- "model.layers.13.input_layernorm.bias": "model-00002-of-00005.safetensors",
186
- "model.layers.13.input_layernorm.weight": "model-00002-of-00005.safetensors",
187
- "model.layers.13.post_attention_layernorm.bias": "model-00002-of-00005.safetensors",
188
- "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
189
- "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
190
- "model.layers.13.self_attn.k_proj.biases": "model-00002-of-00005.safetensors",
191
- "model.layers.13.self_attn.k_proj.scales": "model-00002-of-00005.safetensors",
192
- "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
193
- "model.layers.13.self_attn.o_proj.bias": "model-00002-of-00005.safetensors",
194
- "model.layers.13.self_attn.o_proj.biases": "model-00002-of-00005.safetensors",
195
- "model.layers.13.self_attn.o_proj.scales": "model-00002-of-00005.safetensors",
196
- "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
197
- "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
198
- "model.layers.13.self_attn.q_proj.biases": "model-00002-of-00005.safetensors",
199
- "model.layers.13.self_attn.q_proj.scales": "model-00002-of-00005.safetensors",
200
- "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
201
- "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
202
- "model.layers.13.self_attn.v_proj.biases": "model-00002-of-00005.safetensors",
203
- "model.layers.13.self_attn.v_proj.scales": "model-00002-of-00005.safetensors",
204
- "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
205
- "model.layers.14.block_sparse_moe.gate.biases": "model-00002-of-00005.safetensors",
206
- "model.layers.14.block_sparse_moe.gate.scales": "model-00002-of-00005.safetensors",
207
- "model.layers.14.block_sparse_moe.gate.weight": "model-00002-of-00005.safetensors",
208
- "model.layers.14.block_sparse_moe.switch_mlp.down_proj.biases": "model-00003-of-00005.safetensors",
209
- "model.layers.14.block_sparse_moe.switch_mlp.down_proj.scales": "model-00003-of-00005.safetensors",
210
- "model.layers.14.block_sparse_moe.switch_mlp.down_proj.weight": "model-00003-of-00005.safetensors",
211
- "model.layers.14.block_sparse_moe.switch_mlp.gate_proj.biases": "model-00002-of-00005.safetensors",
212
- "model.layers.14.block_sparse_moe.switch_mlp.gate_proj.scales": "model-00002-of-00005.safetensors",
213
- "model.layers.14.block_sparse_moe.switch_mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
214
- "model.layers.14.block_sparse_moe.switch_mlp.up_proj.biases": "model-00003-of-00005.safetensors",
215
- "model.layers.14.block_sparse_moe.switch_mlp.up_proj.scales": "model-00003-of-00005.safetensors",
216
- "model.layers.14.block_sparse_moe.switch_mlp.up_proj.weight": "model-00003-of-00005.safetensors",
217
- "model.layers.14.input_layernorm.bias": "model-00003-of-00005.safetensors",
218
- "model.layers.14.input_layernorm.weight": "model-00003-of-00005.safetensors",
219
- "model.layers.14.post_attention_layernorm.bias": "model-00003-of-00005.safetensors",
220
- "model.layers.14.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
221
- "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
222
- "model.layers.14.self_attn.k_proj.biases": "model-00002-of-00005.safetensors",
223
- "model.layers.14.self_attn.k_proj.scales": "model-00002-of-00005.safetensors",
224
- "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
225
- "model.layers.14.self_attn.o_proj.bias": "model-00002-of-00005.safetensors",
226
- "model.layers.14.self_attn.o_proj.biases": "model-00002-of-00005.safetensors",
227
- "model.layers.14.self_attn.o_proj.scales": "model-00002-of-00005.safetensors",
228
- "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
229
- "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
230
- "model.layers.14.self_attn.q_proj.biases": "model-00002-of-00005.safetensors",
231
- "model.layers.14.self_attn.q_proj.scales": "model-00002-of-00005.safetensors",
232
- "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
233
- "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
234
- "model.layers.14.self_attn.v_proj.biases": "model-00002-of-00005.safetensors",
235
- "model.layers.14.self_attn.v_proj.scales": "model-00002-of-00005.safetensors",
236
- "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
237
- "model.layers.15.block_sparse_moe.gate.biases": "model-00003-of-00005.safetensors",
238
- "model.layers.15.block_sparse_moe.gate.scales": "model-00003-of-00005.safetensors",
239
- "model.layers.15.block_sparse_moe.gate.weight": "model-00003-of-00005.safetensors",
240
- "model.layers.15.block_sparse_moe.switch_mlp.down_proj.biases": "model-00003-of-00005.safetensors",
241
- "model.layers.15.block_sparse_moe.switch_mlp.down_proj.scales": "model-00003-of-00005.safetensors",
242
- "model.layers.15.block_sparse_moe.switch_mlp.down_proj.weight": "model-00003-of-00005.safetensors",
243
- "model.layers.15.block_sparse_moe.switch_mlp.gate_proj.biases": "model-00003-of-00005.safetensors",
244
- "model.layers.15.block_sparse_moe.switch_mlp.gate_proj.scales": "model-00003-of-00005.safetensors",
245
- "model.layers.15.block_sparse_moe.switch_mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
246
- "model.layers.15.block_sparse_moe.switch_mlp.up_proj.biases": "model-00003-of-00005.safetensors",
247
- "model.layers.15.block_sparse_moe.switch_mlp.up_proj.scales": "model-00003-of-00005.safetensors",
248
- "model.layers.15.block_sparse_moe.switch_mlp.up_proj.weight": "model-00003-of-00005.safetensors",
249
- "model.layers.15.input_layernorm.bias": "model-00003-of-00005.safetensors",
250
- "model.layers.15.input_layernorm.weight": "model-00003-of-00005.safetensors",
251
- "model.layers.15.post_attention_layernorm.bias": "model-00003-of-00005.safetensors",
252
- "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
253
- "model.layers.15.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
254
- "model.layers.15.self_attn.k_proj.biases": "model-00003-of-00005.safetensors",
255
- "model.layers.15.self_attn.k_proj.scales": "model-00003-of-00005.safetensors",
256
- "model.layers.15.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
257
- "model.layers.15.self_attn.o_proj.bias": "model-00003-of-00005.safetensors",
258
- "model.layers.15.self_attn.o_proj.biases": "model-00003-of-00005.safetensors",
259
- "model.layers.15.self_attn.o_proj.scales": "model-00003-of-00005.safetensors",
260
- "model.layers.15.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
261
- "model.layers.15.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
262
- "model.layers.15.self_attn.q_proj.biases": "model-00003-of-00005.safetensors",
263
- "model.layers.15.self_attn.q_proj.scales": "model-00003-of-00005.safetensors",
264
- "model.layers.15.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
265
- "model.layers.15.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
266
- "model.layers.15.self_attn.v_proj.biases": "model-00003-of-00005.safetensors",
267
- "model.layers.15.self_attn.v_proj.scales": "model-00003-of-00005.safetensors",
268
- "model.layers.15.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
269
- "model.layers.16.block_sparse_moe.gate.biases": "model-00003-of-00005.safetensors",
270
- "model.layers.16.block_sparse_moe.gate.scales": "model-00003-of-00005.safetensors",
271
- "model.layers.16.block_sparse_moe.gate.weight": "model-00003-of-00005.safetensors",
272
- "model.layers.16.block_sparse_moe.switch_mlp.down_proj.biases": "model-00003-of-00005.safetensors",
273
- "model.layers.16.block_sparse_moe.switch_mlp.down_proj.scales": "model-00003-of-00005.safetensors",
274
- "model.layers.16.block_sparse_moe.switch_mlp.down_proj.weight": "model-00003-of-00005.safetensors",
275
- "model.layers.16.block_sparse_moe.switch_mlp.gate_proj.biases": "model-00003-of-00005.safetensors",
276
- "model.layers.16.block_sparse_moe.switch_mlp.gate_proj.scales": "model-00003-of-00005.safetensors",
277
- "model.layers.16.block_sparse_moe.switch_mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
278
- "model.layers.16.block_sparse_moe.switch_mlp.up_proj.biases": "model-00003-of-00005.safetensors",
279
- "model.layers.16.block_sparse_moe.switch_mlp.up_proj.scales": "model-00003-of-00005.safetensors",
280
- "model.layers.16.block_sparse_moe.switch_mlp.up_proj.weight": "model-00003-of-00005.safetensors",
281
- "model.layers.16.input_layernorm.bias": "model-00003-of-00005.safetensors",
282
- "model.layers.16.input_layernorm.weight": "model-00003-of-00005.safetensors",
283
- "model.layers.16.post_attention_layernorm.bias": "model-00003-of-00005.safetensors",
284
- "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
285
- "model.layers.16.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
286
- "model.layers.16.self_attn.k_proj.biases": "model-00003-of-00005.safetensors",
287
- "model.layers.16.self_attn.k_proj.scales": "model-00003-of-00005.safetensors",
288
- "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
289
- "model.layers.16.self_attn.o_proj.bias": "model-00003-of-00005.safetensors",
290
- "model.layers.16.self_attn.o_proj.biases": "model-00003-of-00005.safetensors",
291
- "model.layers.16.self_attn.o_proj.scales": "model-00003-of-00005.safetensors",
292
- "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
293
- "model.layers.16.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
294
- "model.layers.16.self_attn.q_proj.biases": "model-00003-of-00005.safetensors",
295
- "model.layers.16.self_attn.q_proj.scales": "model-00003-of-00005.safetensors",
296
- "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
297
- "model.layers.16.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
298
- "model.layers.16.self_attn.v_proj.biases": "model-00003-of-00005.safetensors",
299
- "model.layers.16.self_attn.v_proj.scales": "model-00003-of-00005.safetensors",
300
- "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
301
- "model.layers.17.block_sparse_moe.gate.biases": "model-00003-of-00005.safetensors",
302
- "model.layers.17.block_sparse_moe.gate.scales": "model-00003-of-00005.safetensors",
303
- "model.layers.17.block_sparse_moe.gate.weight": "model-00003-of-00005.safetensors",
304
- "model.layers.17.block_sparse_moe.switch_mlp.down_proj.biases": "model-00003-of-00005.safetensors",
305
- "model.layers.17.block_sparse_moe.switch_mlp.down_proj.scales": "model-00003-of-00005.safetensors",
306
- "model.layers.17.block_sparse_moe.switch_mlp.down_proj.weight": "model-00003-of-00005.safetensors",
307
- "model.layers.17.block_sparse_moe.switch_mlp.gate_proj.biases": "model-00003-of-00005.safetensors",
308
- "model.layers.17.block_sparse_moe.switch_mlp.gate_proj.scales": "model-00003-of-00005.safetensors",
309
- "model.layers.17.block_sparse_moe.switch_mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
310
- "model.layers.17.block_sparse_moe.switch_mlp.up_proj.biases": "model-00003-of-00005.safetensors",
311
- "model.layers.17.block_sparse_moe.switch_mlp.up_proj.scales": "model-00003-of-00005.safetensors",
312
- "model.layers.17.block_sparse_moe.switch_mlp.up_proj.weight": "model-00003-of-00005.safetensors",
313
- "model.layers.17.input_layernorm.bias": "model-00003-of-00005.safetensors",
314
- "model.layers.17.input_layernorm.weight": "model-00003-of-00005.safetensors",
315
- "model.layers.17.post_attention_layernorm.bias": "model-00003-of-00005.safetensors",
316
- "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
317
- "model.layers.17.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
318
- "model.layers.17.self_attn.k_proj.biases": "model-00003-of-00005.safetensors",
319
- "model.layers.17.self_attn.k_proj.scales": "model-00003-of-00005.safetensors",
320
- "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
321
- "model.layers.17.self_attn.o_proj.bias": "model-00003-of-00005.safetensors",
322
- "model.layers.17.self_attn.o_proj.biases": "model-00003-of-00005.safetensors",
323
- "model.layers.17.self_attn.o_proj.scales": "model-00003-of-00005.safetensors",
324
- "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
325
- "model.layers.17.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
326
- "model.layers.17.self_attn.q_proj.biases": "model-00003-of-00005.safetensors",
327
- "model.layers.17.self_attn.q_proj.scales": "model-00003-of-00005.safetensors",
328
- "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
329
- "model.layers.17.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
330
- "model.layers.17.self_attn.v_proj.biases": "model-00003-of-00005.safetensors",
331
- "model.layers.17.self_attn.v_proj.scales": "model-00003-of-00005.safetensors",
332
- "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
333
- "model.layers.18.block_sparse_moe.gate.biases": "model-00003-of-00005.safetensors",
334
- "model.layers.18.block_sparse_moe.gate.scales": "model-00003-of-00005.safetensors",
335
- "model.layers.18.block_sparse_moe.gate.weight": "model-00003-of-00005.safetensors",
336
- "model.layers.18.block_sparse_moe.switch_mlp.down_proj.biases": "model-00003-of-00005.safetensors",
337
- "model.layers.18.block_sparse_moe.switch_mlp.down_proj.scales": "model-00003-of-00005.safetensors",
338
- "model.layers.18.block_sparse_moe.switch_mlp.down_proj.weight": "model-00003-of-00005.safetensors",
339
- "model.layers.18.block_sparse_moe.switch_mlp.gate_proj.biases": "model-00003-of-00005.safetensors",
340
- "model.layers.18.block_sparse_moe.switch_mlp.gate_proj.scales": "model-00003-of-00005.safetensors",
341
- "model.layers.18.block_sparse_moe.switch_mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
342
- "model.layers.18.block_sparse_moe.switch_mlp.up_proj.biases": "model-00003-of-00005.safetensors",
343
- "model.layers.18.block_sparse_moe.switch_mlp.up_proj.scales": "model-00003-of-00005.safetensors",
344
- "model.layers.18.block_sparse_moe.switch_mlp.up_proj.weight": "model-00003-of-00005.safetensors",
345
- "model.layers.18.input_layernorm.bias": "model-00003-of-00005.safetensors",
346
- "model.layers.18.input_layernorm.weight": "model-00003-of-00005.safetensors",
347
- "model.layers.18.post_attention_layernorm.bias": "model-00003-of-00005.safetensors",
348
- "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
349
- "model.layers.18.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
350
- "model.layers.18.self_attn.k_proj.biases": "model-00003-of-00005.safetensors",
351
- "model.layers.18.self_attn.k_proj.scales": "model-00003-of-00005.safetensors",
352
- "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
353
- "model.layers.18.self_attn.o_proj.bias": "model-00003-of-00005.safetensors",
354
- "model.layers.18.self_attn.o_proj.biases": "model-00003-of-00005.safetensors",
355
- "model.layers.18.self_attn.o_proj.scales": "model-00003-of-00005.safetensors",
356
- "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
357
- "model.layers.18.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
358
- "model.layers.18.self_attn.q_proj.biases": "model-00003-of-00005.safetensors",
359
- "model.layers.18.self_attn.q_proj.scales": "model-00003-of-00005.safetensors",
360
- "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
361
- "model.layers.18.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
362
- "model.layers.18.self_attn.v_proj.biases": "model-00003-of-00005.safetensors",
363
- "model.layers.18.self_attn.v_proj.scales": "model-00003-of-00005.safetensors",
364
- "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
365
- "model.layers.19.block_sparse_moe.gate.biases": "model-00003-of-00005.safetensors",
366
- "model.layers.19.block_sparse_moe.gate.scales": "model-00003-of-00005.safetensors",
367
- "model.layers.19.block_sparse_moe.gate.weight": "model-00003-of-00005.safetensors",
368
- "model.layers.19.block_sparse_moe.switch_mlp.down_proj.biases": "model-00003-of-00005.safetensors",
369
- "model.layers.19.block_sparse_moe.switch_mlp.down_proj.scales": "model-00003-of-00005.safetensors",
370
- "model.layers.19.block_sparse_moe.switch_mlp.down_proj.weight": "model-00003-of-00005.safetensors",
371
- "model.layers.19.block_sparse_moe.switch_mlp.gate_proj.biases": "model-00003-of-00005.safetensors",
372
- "model.layers.19.block_sparse_moe.switch_mlp.gate_proj.scales": "model-00003-of-00005.safetensors",
373
- "model.layers.19.block_sparse_moe.switch_mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
374
- "model.layers.19.block_sparse_moe.switch_mlp.up_proj.biases": "model-00003-of-00005.safetensors",
375
- "model.layers.19.block_sparse_moe.switch_mlp.up_proj.scales": "model-00003-of-00005.safetensors",
376
- "model.layers.19.block_sparse_moe.switch_mlp.up_proj.weight": "model-00003-of-00005.safetensors",
377
- "model.layers.19.input_layernorm.bias": "model-00003-of-00005.safetensors",
378
- "model.layers.19.input_layernorm.weight": "model-00003-of-00005.safetensors",
379
- "model.layers.19.post_attention_layernorm.bias": "model-00003-of-00005.safetensors",
380
- "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
381
- "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
382
- "model.layers.19.self_attn.k_proj.biases": "model-00003-of-00005.safetensors",
383
- "model.layers.19.self_attn.k_proj.scales": "model-00003-of-00005.safetensors",
384
- "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
385
- "model.layers.19.self_attn.o_proj.bias": "model-00003-of-00005.safetensors",
386
- "model.layers.19.self_attn.o_proj.biases": "model-00003-of-00005.safetensors",
387
- "model.layers.19.self_attn.o_proj.scales": "model-00003-of-00005.safetensors",
388
- "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
389
- "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
390
- "model.layers.19.self_attn.q_proj.biases": "model-00003-of-00005.safetensors",
391
- "model.layers.19.self_attn.q_proj.scales": "model-00003-of-00005.safetensors",
392
- "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
393
- "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
394
- "model.layers.19.self_attn.v_proj.biases": "model-00003-of-00005.safetensors",
395
- "model.layers.19.self_attn.v_proj.scales": "model-00003-of-00005.safetensors",
396
- "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
397
- "model.layers.2.block_sparse_moe.gate.biases": "model-00001-of-00005.safetensors",
398
- "model.layers.2.block_sparse_moe.gate.scales": "model-00001-of-00005.safetensors",
399
- "model.layers.2.block_sparse_moe.gate.weight": "model-00001-of-00005.safetensors",
400
- "model.layers.2.block_sparse_moe.switch_mlp.down_proj.biases": "model-00001-of-00005.safetensors",
401
- "model.layers.2.block_sparse_moe.switch_mlp.down_proj.scales": "model-00001-of-00005.safetensors",
402
- "model.layers.2.block_sparse_moe.switch_mlp.down_proj.weight": "model-00001-of-00005.safetensors",
403
- "model.layers.2.block_sparse_moe.switch_mlp.gate_proj.biases": "model-00001-of-00005.safetensors",
404
- "model.layers.2.block_sparse_moe.switch_mlp.gate_proj.scales": "model-00001-of-00005.safetensors",
405
- "model.layers.2.block_sparse_moe.switch_mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
406
- "model.layers.2.block_sparse_moe.switch_mlp.up_proj.biases": "model-00001-of-00005.safetensors",
407
- "model.layers.2.block_sparse_moe.switch_mlp.up_proj.scales": "model-00001-of-00005.safetensors",
408
- "model.layers.2.block_sparse_moe.switch_mlp.up_proj.weight": "model-00001-of-00005.safetensors",
409
- "model.layers.2.input_layernorm.bias": "model-00001-of-00005.safetensors",
410
- "model.layers.2.input_layernorm.weight": "model-00001-of-00005.safetensors",
411
- "model.layers.2.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
412
- "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
413
- "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00005.safetensors",
414
- "model.layers.2.self_attn.k_proj.biases": "model-00001-of-00005.safetensors",
415
- "model.layers.2.self_attn.k_proj.scales": "model-00001-of-00005.safetensors",
416
- "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
417
- "model.layers.2.self_attn.o_proj.bias": "model-00001-of-00005.safetensors",
418
- "model.layers.2.self_attn.o_proj.biases": "model-00001-of-00005.safetensors",
419
- "model.layers.2.self_attn.o_proj.scales": "model-00001-of-00005.safetensors",
420
- "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
421
- "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
422
- "model.layers.2.self_attn.q_proj.biases": "model-00001-of-00005.safetensors",
423
- "model.layers.2.self_attn.q_proj.scales": "model-00001-of-00005.safetensors",
424
- "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
425
- "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
426
- "model.layers.2.self_attn.v_proj.biases": "model-00001-of-00005.safetensors",
427
- "model.layers.2.self_attn.v_proj.scales": "model-00001-of-00005.safetensors",
428
- "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
429
- "model.layers.20.block_sparse_moe.gate.biases": "model-00003-of-00005.safetensors",
430
- "model.layers.20.block_sparse_moe.gate.scales": "model-00003-of-00005.safetensors",
431
- "model.layers.20.block_sparse_moe.gate.weight": "model-00003-of-00005.safetensors",
432
- "model.layers.20.block_sparse_moe.switch_mlp.down_proj.biases": "model-00003-of-00005.safetensors",
433
- "model.layers.20.block_sparse_moe.switch_mlp.down_proj.scales": "model-00003-of-00005.safetensors",
434
- "model.layers.20.block_sparse_moe.switch_mlp.down_proj.weight": "model-00003-of-00005.safetensors",
435
- "model.layers.20.block_sparse_moe.switch_mlp.gate_proj.biases": "model-00003-of-00005.safetensors",
436
- "model.layers.20.block_sparse_moe.switch_mlp.gate_proj.scales": "model-00003-of-00005.safetensors",
437
- "model.layers.20.block_sparse_moe.switch_mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
438
- "model.layers.20.block_sparse_moe.switch_mlp.up_proj.biases": "model-00003-of-00005.safetensors",
439
- "model.layers.20.block_sparse_moe.switch_mlp.up_proj.scales": "model-00003-of-00005.safetensors",
440
- "model.layers.20.block_sparse_moe.switch_mlp.up_proj.weight": "model-00003-of-00005.safetensors",
441
- "model.layers.20.input_layernorm.bias": "model-00003-of-00005.safetensors",
442
- "model.layers.20.input_layernorm.weight": "model-00003-of-00005.safetensors",
443
- "model.layers.20.post_attention_layernorm.bias": "model-00003-of-00005.safetensors",
444
- "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00005.safetensors",
445
- "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
446
- "model.layers.20.self_attn.k_proj.biases": "model-00003-of-00005.safetensors",
447
- "model.layers.20.self_attn.k_proj.scales": "model-00003-of-00005.safetensors",
448
- "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
449
- "model.layers.20.self_attn.o_proj.bias": "model-00003-of-00005.safetensors",
450
- "model.layers.20.self_attn.o_proj.biases": "model-00003-of-00005.safetensors",
451
- "model.layers.20.self_attn.o_proj.scales": "model-00003-of-00005.safetensors",
452
- "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
453
- "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
454
- "model.layers.20.self_attn.q_proj.biases": "model-00003-of-00005.safetensors",
455
- "model.layers.20.self_attn.q_proj.scales": "model-00003-of-00005.safetensors",
456
- "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
457
- "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
458
- "model.layers.20.self_attn.v_proj.biases": "model-00003-of-00005.safetensors",
459
- "model.layers.20.self_attn.v_proj.scales": "model-00003-of-00005.safetensors",
460
- "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
461
- "model.layers.21.block_sparse_moe.gate.biases": "model-00003-of-00005.safetensors",
462
- "model.layers.21.block_sparse_moe.gate.scales": "model-00003-of-00005.safetensors",
463
- "model.layers.21.block_sparse_moe.gate.weight": "model-00003-of-00005.safetensors",
464
- "model.layers.21.block_sparse_moe.switch_mlp.down_proj.biases": "model-00004-of-00005.safetensors",
465
- "model.layers.21.block_sparse_moe.switch_mlp.down_proj.scales": "model-00004-of-00005.safetensors",
466
- "model.layers.21.block_sparse_moe.switch_mlp.down_proj.weight": "model-00004-of-00005.safetensors",
467
- "model.layers.21.block_sparse_moe.switch_mlp.gate_proj.biases": "model-00003-of-00005.safetensors",
468
- "model.layers.21.block_sparse_moe.switch_mlp.gate_proj.scales": "model-00003-of-00005.safetensors",
469
- "model.layers.21.block_sparse_moe.switch_mlp.gate_proj.weight": "model-00003-of-00005.safetensors",
470
- "model.layers.21.block_sparse_moe.switch_mlp.up_proj.biases": "model-00003-of-00005.safetensors",
471
- "model.layers.21.block_sparse_moe.switch_mlp.up_proj.scales": "model-00003-of-00005.safetensors",
472
- "model.layers.21.block_sparse_moe.switch_mlp.up_proj.weight": "model-00003-of-00005.safetensors",
473
- "model.layers.21.input_layernorm.bias": "model-00004-of-00005.safetensors",
474
- "model.layers.21.input_layernorm.weight": "model-00004-of-00005.safetensors",
475
- "model.layers.21.post_attention_layernorm.bias": "model-00004-of-00005.safetensors",
476
- "model.layers.21.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
477
- "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00005.safetensors",
478
- "model.layers.21.self_attn.k_proj.biases": "model-00003-of-00005.safetensors",
479
- "model.layers.21.self_attn.k_proj.scales": "model-00003-of-00005.safetensors",
480
- "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00005.safetensors",
481
- "model.layers.21.self_attn.o_proj.bias": "model-00003-of-00005.safetensors",
482
- "model.layers.21.self_attn.o_proj.biases": "model-00003-of-00005.safetensors",
483
- "model.layers.21.self_attn.o_proj.scales": "model-00003-of-00005.safetensors",
484
- "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00005.safetensors",
485
- "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00005.safetensors",
486
- "model.layers.21.self_attn.q_proj.biases": "model-00003-of-00005.safetensors",
487
- "model.layers.21.self_attn.q_proj.scales": "model-00003-of-00005.safetensors",
488
- "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00005.safetensors",
489
- "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00005.safetensors",
490
- "model.layers.21.self_attn.v_proj.biases": "model-00003-of-00005.safetensors",
491
- "model.layers.21.self_attn.v_proj.scales": "model-00003-of-00005.safetensors",
492
- "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00005.safetensors",
493
- "model.layers.22.block_sparse_moe.gate.biases": "model-00004-of-00005.safetensors",
494
- "model.layers.22.block_sparse_moe.gate.scales": "model-00004-of-00005.safetensors",
495
- "model.layers.22.block_sparse_moe.gate.weight": "model-00004-of-00005.safetensors",
496
- "model.layers.22.block_sparse_moe.switch_mlp.down_proj.biases": "model-00004-of-00005.safetensors",
497
- "model.layers.22.block_sparse_moe.switch_mlp.down_proj.scales": "model-00004-of-00005.safetensors",
498
- "model.layers.22.block_sparse_moe.switch_mlp.down_proj.weight": "model-00004-of-00005.safetensors",
499
- "model.layers.22.block_sparse_moe.switch_mlp.gate_proj.biases": "model-00004-of-00005.safetensors",
500
- "model.layers.22.block_sparse_moe.switch_mlp.gate_proj.scales": "model-00004-of-00005.safetensors",
501
- "model.layers.22.block_sparse_moe.switch_mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
502
- "model.layers.22.block_sparse_moe.switch_mlp.up_proj.biases": "model-00004-of-00005.safetensors",
503
- "model.layers.22.block_sparse_moe.switch_mlp.up_proj.scales": "model-00004-of-00005.safetensors",
504
- "model.layers.22.block_sparse_moe.switch_mlp.up_proj.weight": "model-00004-of-00005.safetensors",
505
- "model.layers.22.input_layernorm.bias": "model-00004-of-00005.safetensors",
506
- "model.layers.22.input_layernorm.weight": "model-00004-of-00005.safetensors",
507
- "model.layers.22.post_attention_layernorm.bias": "model-00004-of-00005.safetensors",
508
- "model.layers.22.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
509
- "model.layers.22.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
510
- "model.layers.22.self_attn.k_proj.biases": "model-00004-of-00005.safetensors",
511
- "model.layers.22.self_attn.k_proj.scales": "model-00004-of-00005.safetensors",
512
- "model.layers.22.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
513
- "model.layers.22.self_attn.o_proj.bias": "model-00004-of-00005.safetensors",
514
- "model.layers.22.self_attn.o_proj.biases": "model-00004-of-00005.safetensors",
515
- "model.layers.22.self_attn.o_proj.scales": "model-00004-of-00005.safetensors",
516
- "model.layers.22.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
517
- "model.layers.22.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
518
- "model.layers.22.self_attn.q_proj.biases": "model-00004-of-00005.safetensors",
519
- "model.layers.22.self_attn.q_proj.scales": "model-00004-of-00005.safetensors",
520
- "model.layers.22.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
521
- "model.layers.22.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
522
- "model.layers.22.self_attn.v_proj.biases": "model-00004-of-00005.safetensors",
523
- "model.layers.22.self_attn.v_proj.scales": "model-00004-of-00005.safetensors",
524
- "model.layers.22.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
525
- "model.layers.23.block_sparse_moe.gate.biases": "model-00004-of-00005.safetensors",
526
- "model.layers.23.block_sparse_moe.gate.scales": "model-00004-of-00005.safetensors",
527
- "model.layers.23.block_sparse_moe.gate.weight": "model-00004-of-00005.safetensors",
528
- "model.layers.23.block_sparse_moe.switch_mlp.down_proj.biases": "model-00004-of-00005.safetensors",
529
- "model.layers.23.block_sparse_moe.switch_mlp.down_proj.scales": "model-00004-of-00005.safetensors",
530
- "model.layers.23.block_sparse_moe.switch_mlp.down_proj.weight": "model-00004-of-00005.safetensors",
531
- "model.layers.23.block_sparse_moe.switch_mlp.gate_proj.biases": "model-00004-of-00005.safetensors",
532
- "model.layers.23.block_sparse_moe.switch_mlp.gate_proj.scales": "model-00004-of-00005.safetensors",
533
- "model.layers.23.block_sparse_moe.switch_mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
534
- "model.layers.23.block_sparse_moe.switch_mlp.up_proj.biases": "model-00004-of-00005.safetensors",
535
- "model.layers.23.block_sparse_moe.switch_mlp.up_proj.scales": "model-00004-of-00005.safetensors",
536
- "model.layers.23.block_sparse_moe.switch_mlp.up_proj.weight": "model-00004-of-00005.safetensors",
537
- "model.layers.23.input_layernorm.bias": "model-00004-of-00005.safetensors",
538
- "model.layers.23.input_layernorm.weight": "model-00004-of-00005.safetensors",
539
- "model.layers.23.post_attention_layernorm.bias": "model-00004-of-00005.safetensors",
540
- "model.layers.23.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
541
- "model.layers.23.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
542
- "model.layers.23.self_attn.k_proj.biases": "model-00004-of-00005.safetensors",
543
- "model.layers.23.self_attn.k_proj.scales": "model-00004-of-00005.safetensors",
544
- "model.layers.23.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
545
- "model.layers.23.self_attn.o_proj.bias": "model-00004-of-00005.safetensors",
546
- "model.layers.23.self_attn.o_proj.biases": "model-00004-of-00005.safetensors",
547
- "model.layers.23.self_attn.o_proj.scales": "model-00004-of-00005.safetensors",
548
- "model.layers.23.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
549
- "model.layers.23.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
550
- "model.layers.23.self_attn.q_proj.biases": "model-00004-of-00005.safetensors",
551
- "model.layers.23.self_attn.q_proj.scales": "model-00004-of-00005.safetensors",
552
- "model.layers.23.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
553
- "model.layers.23.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
554
- "model.layers.23.self_attn.v_proj.biases": "model-00004-of-00005.safetensors",
555
- "model.layers.23.self_attn.v_proj.scales": "model-00004-of-00005.safetensors",
556
- "model.layers.23.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
557
- "model.layers.24.block_sparse_moe.gate.biases": "model-00004-of-00005.safetensors",
558
- "model.layers.24.block_sparse_moe.gate.scales": "model-00004-of-00005.safetensors",
559
- "model.layers.24.block_sparse_moe.gate.weight": "model-00004-of-00005.safetensors",
560
- "model.layers.24.block_sparse_moe.switch_mlp.down_proj.biases": "model-00004-of-00005.safetensors",
561
- "model.layers.24.block_sparse_moe.switch_mlp.down_proj.scales": "model-00004-of-00005.safetensors",
562
- "model.layers.24.block_sparse_moe.switch_mlp.down_proj.weight": "model-00004-of-00005.safetensors",
563
- "model.layers.24.block_sparse_moe.switch_mlp.gate_proj.biases": "model-00004-of-00005.safetensors",
564
- "model.layers.24.block_sparse_moe.switch_mlp.gate_proj.scales": "model-00004-of-00005.safetensors",
565
- "model.layers.24.block_sparse_moe.switch_mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
566
- "model.layers.24.block_sparse_moe.switch_mlp.up_proj.biases": "model-00004-of-00005.safetensors",
567
- "model.layers.24.block_sparse_moe.switch_mlp.up_proj.scales": "model-00004-of-00005.safetensors",
568
- "model.layers.24.block_sparse_moe.switch_mlp.up_proj.weight": "model-00004-of-00005.safetensors",
569
- "model.layers.24.input_layernorm.bias": "model-00004-of-00005.safetensors",
570
- "model.layers.24.input_layernorm.weight": "model-00004-of-00005.safetensors",
571
- "model.layers.24.post_attention_layernorm.bias": "model-00004-of-00005.safetensors",
572
- "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
573
- "model.layers.24.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
574
- "model.layers.24.self_attn.k_proj.biases": "model-00004-of-00005.safetensors",
575
- "model.layers.24.self_attn.k_proj.scales": "model-00004-of-00005.safetensors",
576
- "model.layers.24.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
577
- "model.layers.24.self_attn.o_proj.bias": "model-00004-of-00005.safetensors",
578
- "model.layers.24.self_attn.o_proj.biases": "model-00004-of-00005.safetensors",
579
- "model.layers.24.self_attn.o_proj.scales": "model-00004-of-00005.safetensors",
580
- "model.layers.24.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
581
- "model.layers.24.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
582
- "model.layers.24.self_attn.q_proj.biases": "model-00004-of-00005.safetensors",
583
- "model.layers.24.self_attn.q_proj.scales": "model-00004-of-00005.safetensors",
584
- "model.layers.24.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
585
- "model.layers.24.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
586
- "model.layers.24.self_attn.v_proj.biases": "model-00004-of-00005.safetensors",
587
- "model.layers.24.self_attn.v_proj.scales": "model-00004-of-00005.safetensors",
588
- "model.layers.24.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
589
- "model.layers.25.block_sparse_moe.gate.biases": "model-00004-of-00005.safetensors",
590
- "model.layers.25.block_sparse_moe.gate.scales": "model-00004-of-00005.safetensors",
591
- "model.layers.25.block_sparse_moe.gate.weight": "model-00004-of-00005.safetensors",
592
- "model.layers.25.block_sparse_moe.switch_mlp.down_proj.biases": "model-00004-of-00005.safetensors",
593
- "model.layers.25.block_sparse_moe.switch_mlp.down_proj.scales": "model-00004-of-00005.safetensors",
594
- "model.layers.25.block_sparse_moe.switch_mlp.down_proj.weight": "model-00004-of-00005.safetensors",
595
- "model.layers.25.block_sparse_moe.switch_mlp.gate_proj.biases": "model-00004-of-00005.safetensors",
596
- "model.layers.25.block_sparse_moe.switch_mlp.gate_proj.scales": "model-00004-of-00005.safetensors",
597
- "model.layers.25.block_sparse_moe.switch_mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
598
- "model.layers.25.block_sparse_moe.switch_mlp.up_proj.biases": "model-00004-of-00005.safetensors",
599
- "model.layers.25.block_sparse_moe.switch_mlp.up_proj.scales": "model-00004-of-00005.safetensors",
600
- "model.layers.25.block_sparse_moe.switch_mlp.up_proj.weight": "model-00004-of-00005.safetensors",
601
- "model.layers.25.input_layernorm.bias": "model-00004-of-00005.safetensors",
602
- "model.layers.25.input_layernorm.weight": "model-00004-of-00005.safetensors",
603
- "model.layers.25.post_attention_layernorm.bias": "model-00004-of-00005.safetensors",
604
- "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
605
- "model.layers.25.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
606
- "model.layers.25.self_attn.k_proj.biases": "model-00004-of-00005.safetensors",
607
- "model.layers.25.self_attn.k_proj.scales": "model-00004-of-00005.safetensors",
608
- "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
609
- "model.layers.25.self_attn.o_proj.bias": "model-00004-of-00005.safetensors",
610
- "model.layers.25.self_attn.o_proj.biases": "model-00004-of-00005.safetensors",
611
- "model.layers.25.self_attn.o_proj.scales": "model-00004-of-00005.safetensors",
612
- "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
613
- "model.layers.25.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
614
- "model.layers.25.self_attn.q_proj.biases": "model-00004-of-00005.safetensors",
615
- "model.layers.25.self_attn.q_proj.scales": "model-00004-of-00005.safetensors",
616
- "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
617
- "model.layers.25.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
618
- "model.layers.25.self_attn.v_proj.biases": "model-00004-of-00005.safetensors",
619
- "model.layers.25.self_attn.v_proj.scales": "model-00004-of-00005.safetensors",
620
- "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
621
- "model.layers.26.block_sparse_moe.gate.biases": "model-00004-of-00005.safetensors",
622
- "model.layers.26.block_sparse_moe.gate.scales": "model-00004-of-00005.safetensors",
623
- "model.layers.26.block_sparse_moe.gate.weight": "model-00004-of-00005.safetensors",
624
- "model.layers.26.block_sparse_moe.switch_mlp.down_proj.biases": "model-00004-of-00005.safetensors",
625
- "model.layers.26.block_sparse_moe.switch_mlp.down_proj.scales": "model-00004-of-00005.safetensors",
626
- "model.layers.26.block_sparse_moe.switch_mlp.down_proj.weight": "model-00004-of-00005.safetensors",
627
- "model.layers.26.block_sparse_moe.switch_mlp.gate_proj.biases": "model-00004-of-00005.safetensors",
628
- "model.layers.26.block_sparse_moe.switch_mlp.gate_proj.scales": "model-00004-of-00005.safetensors",
629
- "model.layers.26.block_sparse_moe.switch_mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
630
- "model.layers.26.block_sparse_moe.switch_mlp.up_proj.biases": "model-00004-of-00005.safetensors",
631
- "model.layers.26.block_sparse_moe.switch_mlp.up_proj.scales": "model-00004-of-00005.safetensors",
632
- "model.layers.26.block_sparse_moe.switch_mlp.up_proj.weight": "model-00004-of-00005.safetensors",
633
- "model.layers.26.input_layernorm.bias": "model-00004-of-00005.safetensors",
634
- "model.layers.26.input_layernorm.weight": "model-00004-of-00005.safetensors",
635
- "model.layers.26.post_attention_layernorm.bias": "model-00004-of-00005.safetensors",
636
- "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
637
- "model.layers.26.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
638
- "model.layers.26.self_attn.k_proj.biases": "model-00004-of-00005.safetensors",
639
- "model.layers.26.self_attn.k_proj.scales": "model-00004-of-00005.safetensors",
640
- "model.layers.26.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
641
- "model.layers.26.self_attn.o_proj.bias": "model-00004-of-00005.safetensors",
642
- "model.layers.26.self_attn.o_proj.biases": "model-00004-of-00005.safetensors",
643
- "model.layers.26.self_attn.o_proj.scales": "model-00004-of-00005.safetensors",
644
- "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
645
- "model.layers.26.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
646
- "model.layers.26.self_attn.q_proj.biases": "model-00004-of-00005.safetensors",
647
- "model.layers.26.self_attn.q_proj.scales": "model-00004-of-00005.safetensors",
648
- "model.layers.26.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
649
- "model.layers.26.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
650
- "model.layers.26.self_attn.v_proj.biases": "model-00004-of-00005.safetensors",
651
- "model.layers.26.self_attn.v_proj.scales": "model-00004-of-00005.safetensors",
652
- "model.layers.26.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
653
- "model.layers.27.block_sparse_moe.gate.biases": "model-00004-of-00005.safetensors",
654
- "model.layers.27.block_sparse_moe.gate.scales": "model-00004-of-00005.safetensors",
655
- "model.layers.27.block_sparse_moe.gate.weight": "model-00004-of-00005.safetensors",
656
- "model.layers.27.block_sparse_moe.switch_mlp.down_proj.biases": "model-00004-of-00005.safetensors",
657
- "model.layers.27.block_sparse_moe.switch_mlp.down_proj.scales": "model-00004-of-00005.safetensors",
658
- "model.layers.27.block_sparse_moe.switch_mlp.down_proj.weight": "model-00004-of-00005.safetensors",
659
- "model.layers.27.block_sparse_moe.switch_mlp.gate_proj.biases": "model-00004-of-00005.safetensors",
660
- "model.layers.27.block_sparse_moe.switch_mlp.gate_proj.scales": "model-00004-of-00005.safetensors",
661
- "model.layers.27.block_sparse_moe.switch_mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
662
- "model.layers.27.block_sparse_moe.switch_mlp.up_proj.biases": "model-00004-of-00005.safetensors",
663
- "model.layers.27.block_sparse_moe.switch_mlp.up_proj.scales": "model-00004-of-00005.safetensors",
664
- "model.layers.27.block_sparse_moe.switch_mlp.up_proj.weight": "model-00004-of-00005.safetensors",
665
- "model.layers.27.input_layernorm.bias": "model-00004-of-00005.safetensors",
666
- "model.layers.27.input_layernorm.weight": "model-00004-of-00005.safetensors",
667
- "model.layers.27.post_attention_layernorm.bias": "model-00004-of-00005.safetensors",
668
- "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
669
- "model.layers.27.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
670
- "model.layers.27.self_attn.k_proj.biases": "model-00004-of-00005.safetensors",
671
- "model.layers.27.self_attn.k_proj.scales": "model-00004-of-00005.safetensors",
672
- "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
673
- "model.layers.27.self_attn.o_proj.bias": "model-00004-of-00005.safetensors",
674
- "model.layers.27.self_attn.o_proj.biases": "model-00004-of-00005.safetensors",
675
- "model.layers.27.self_attn.o_proj.scales": "model-00004-of-00005.safetensors",
676
- "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
677
- "model.layers.27.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
678
- "model.layers.27.self_attn.q_proj.biases": "model-00004-of-00005.safetensors",
679
- "model.layers.27.self_attn.q_proj.scales": "model-00004-of-00005.safetensors",
680
- "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
681
- "model.layers.27.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
682
- "model.layers.27.self_attn.v_proj.biases": "model-00004-of-00005.safetensors",
683
- "model.layers.27.self_attn.v_proj.scales": "model-00004-of-00005.safetensors",
684
- "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
685
- "model.layers.28.block_sparse_moe.gate.biases": "model-00004-of-00005.safetensors",
686
- "model.layers.28.block_sparse_moe.gate.scales": "model-00004-of-00005.safetensors",
687
- "model.layers.28.block_sparse_moe.gate.weight": "model-00004-of-00005.safetensors",
688
- "model.layers.28.block_sparse_moe.switch_mlp.down_proj.biases": "model-00004-of-00005.safetensors",
689
- "model.layers.28.block_sparse_moe.switch_mlp.down_proj.scales": "model-00004-of-00005.safetensors",
690
- "model.layers.28.block_sparse_moe.switch_mlp.down_proj.weight": "model-00004-of-00005.safetensors",
691
- "model.layers.28.block_sparse_moe.switch_mlp.gate_proj.biases": "model-00004-of-00005.safetensors",
692
- "model.layers.28.block_sparse_moe.switch_mlp.gate_proj.scales": "model-00004-of-00005.safetensors",
693
- "model.layers.28.block_sparse_moe.switch_mlp.gate_proj.weight": "model-00004-of-00005.safetensors",
694
- "model.layers.28.block_sparse_moe.switch_mlp.up_proj.biases": "model-00004-of-00005.safetensors",
695
- "model.layers.28.block_sparse_moe.switch_mlp.up_proj.scales": "model-00004-of-00005.safetensors",
696
- "model.layers.28.block_sparse_moe.switch_mlp.up_proj.weight": "model-00004-of-00005.safetensors",
697
- "model.layers.28.input_layernorm.bias": "model-00004-of-00005.safetensors",
698
- "model.layers.28.input_layernorm.weight": "model-00004-of-00005.safetensors",
699
- "model.layers.28.post_attention_layernorm.bias": "model-00004-of-00005.safetensors",
700
- "model.layers.28.post_attention_layernorm.weight": "model-00004-of-00005.safetensors",
701
- "model.layers.28.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
702
- "model.layers.28.self_attn.k_proj.biases": "model-00004-of-00005.safetensors",
703
- "model.layers.28.self_attn.k_proj.scales": "model-00004-of-00005.safetensors",
704
- "model.layers.28.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
705
- "model.layers.28.self_attn.o_proj.bias": "model-00004-of-00005.safetensors",
706
- "model.layers.28.self_attn.o_proj.biases": "model-00004-of-00005.safetensors",
707
- "model.layers.28.self_attn.o_proj.scales": "model-00004-of-00005.safetensors",
708
- "model.layers.28.self_attn.o_proj.weight": "model-00004-of-00005.safetensors",
709
- "model.layers.28.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
710
- "model.layers.28.self_attn.q_proj.biases": "model-00004-of-00005.safetensors",
711
- "model.layers.28.self_attn.q_proj.scales": "model-00004-of-00005.safetensors",
712
- "model.layers.28.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
713
- "model.layers.28.self_attn.v_proj.bias": "model-00004-of-00005.safetensors",
714
- "model.layers.28.self_attn.v_proj.biases": "model-00004-of-00005.safetensors",
715
- "model.layers.28.self_attn.v_proj.scales": "model-00004-of-00005.safetensors",
716
- "model.layers.28.self_attn.v_proj.weight": "model-00004-of-00005.safetensors",
717
- "model.layers.29.block_sparse_moe.gate.biases": "model-00005-of-00005.safetensors",
718
- "model.layers.29.block_sparse_moe.gate.scales": "model-00005-of-00005.safetensors",
719
- "model.layers.29.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors",
720
- "model.layers.29.block_sparse_moe.switch_mlp.down_proj.biases": "model-00005-of-00005.safetensors",
721
- "model.layers.29.block_sparse_moe.switch_mlp.down_proj.scales": "model-00005-of-00005.safetensors",
722
- "model.layers.29.block_sparse_moe.switch_mlp.down_proj.weight": "model-00005-of-00005.safetensors",
723
- "model.layers.29.block_sparse_moe.switch_mlp.gate_proj.biases": "model-00005-of-00005.safetensors",
724
- "model.layers.29.block_sparse_moe.switch_mlp.gate_proj.scales": "model-00005-of-00005.safetensors",
725
- "model.layers.29.block_sparse_moe.switch_mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
726
- "model.layers.29.block_sparse_moe.switch_mlp.up_proj.biases": "model-00005-of-00005.safetensors",
727
- "model.layers.29.block_sparse_moe.switch_mlp.up_proj.scales": "model-00005-of-00005.safetensors",
728
- "model.layers.29.block_sparse_moe.switch_mlp.up_proj.weight": "model-00005-of-00005.safetensors",
729
- "model.layers.29.input_layernorm.bias": "model-00005-of-00005.safetensors",
730
- "model.layers.29.input_layernorm.weight": "model-00005-of-00005.safetensors",
731
- "model.layers.29.post_attention_layernorm.bias": "model-00005-of-00005.safetensors",
732
- "model.layers.29.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
733
- "model.layers.29.self_attn.k_proj.bias": "model-00004-of-00005.safetensors",
734
- "model.layers.29.self_attn.k_proj.biases": "model-00004-of-00005.safetensors",
735
- "model.layers.29.self_attn.k_proj.scales": "model-00004-of-00005.safetensors",
736
- "model.layers.29.self_attn.k_proj.weight": "model-00004-of-00005.safetensors",
737
- "model.layers.29.self_attn.o_proj.bias": "model-00005-of-00005.safetensors",
738
- "model.layers.29.self_attn.o_proj.biases": "model-00005-of-00005.safetensors",
739
- "model.layers.29.self_attn.o_proj.scales": "model-00005-of-00005.safetensors",
740
- "model.layers.29.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
741
- "model.layers.29.self_attn.q_proj.bias": "model-00004-of-00005.safetensors",
742
- "model.layers.29.self_attn.q_proj.biases": "model-00004-of-00005.safetensors",
743
- "model.layers.29.self_attn.q_proj.scales": "model-00004-of-00005.safetensors",
744
- "model.layers.29.self_attn.q_proj.weight": "model-00004-of-00005.safetensors",
745
- "model.layers.29.self_attn.v_proj.bias": "model-00005-of-00005.safetensors",
746
- "model.layers.29.self_attn.v_proj.biases": "model-00005-of-00005.safetensors",
747
- "model.layers.29.self_attn.v_proj.scales": "model-00005-of-00005.safetensors",
748
- "model.layers.29.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
749
- "model.layers.3.block_sparse_moe.gate.biases": "model-00001-of-00005.safetensors",
750
- "model.layers.3.block_sparse_moe.gate.scales": "model-00001-of-00005.safetensors",
751
- "model.layers.3.block_sparse_moe.gate.weight": "model-00001-of-00005.safetensors",
752
- "model.layers.3.block_sparse_moe.switch_mlp.down_proj.biases": "model-00001-of-00005.safetensors",
753
- "model.layers.3.block_sparse_moe.switch_mlp.down_proj.scales": "model-00001-of-00005.safetensors",
754
- "model.layers.3.block_sparse_moe.switch_mlp.down_proj.weight": "model-00001-of-00005.safetensors",
755
- "model.layers.3.block_sparse_moe.switch_mlp.gate_proj.biases": "model-00001-of-00005.safetensors",
756
- "model.layers.3.block_sparse_moe.switch_mlp.gate_proj.scales": "model-00001-of-00005.safetensors",
757
- "model.layers.3.block_sparse_moe.switch_mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
758
- "model.layers.3.block_sparse_moe.switch_mlp.up_proj.biases": "model-00001-of-00005.safetensors",
759
- "model.layers.3.block_sparse_moe.switch_mlp.up_proj.scales": "model-00001-of-00005.safetensors",
760
- "model.layers.3.block_sparse_moe.switch_mlp.up_proj.weight": "model-00001-of-00005.safetensors",
761
- "model.layers.3.input_layernorm.bias": "model-00001-of-00005.safetensors",
762
- "model.layers.3.input_layernorm.weight": "model-00001-of-00005.safetensors",
763
- "model.layers.3.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
764
- "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
765
- "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00005.safetensors",
766
- "model.layers.3.self_attn.k_proj.biases": "model-00001-of-00005.safetensors",
767
- "model.layers.3.self_attn.k_proj.scales": "model-00001-of-00005.safetensors",
768
- "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
769
- "model.layers.3.self_attn.o_proj.bias": "model-00001-of-00005.safetensors",
770
- "model.layers.3.self_attn.o_proj.biases": "model-00001-of-00005.safetensors",
771
- "model.layers.3.self_attn.o_proj.scales": "model-00001-of-00005.safetensors",
772
- "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
773
- "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
774
- "model.layers.3.self_attn.q_proj.biases": "model-00001-of-00005.safetensors",
775
- "model.layers.3.self_attn.q_proj.scales": "model-00001-of-00005.safetensors",
776
- "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
777
- "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
778
- "model.layers.3.self_attn.v_proj.biases": "model-00001-of-00005.safetensors",
779
- "model.layers.3.self_attn.v_proj.scales": "model-00001-of-00005.safetensors",
780
- "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
781
- "model.layers.30.block_sparse_moe.gate.biases": "model-00005-of-00005.safetensors",
782
- "model.layers.30.block_sparse_moe.gate.scales": "model-00005-of-00005.safetensors",
783
- "model.layers.30.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors",
784
- "model.layers.30.block_sparse_moe.switch_mlp.down_proj.biases": "model-00005-of-00005.safetensors",
785
- "model.layers.30.block_sparse_moe.switch_mlp.down_proj.scales": "model-00005-of-00005.safetensors",
786
- "model.layers.30.block_sparse_moe.switch_mlp.down_proj.weight": "model-00005-of-00005.safetensors",
787
- "model.layers.30.block_sparse_moe.switch_mlp.gate_proj.biases": "model-00005-of-00005.safetensors",
788
- "model.layers.30.block_sparse_moe.switch_mlp.gate_proj.scales": "model-00005-of-00005.safetensors",
789
- "model.layers.30.block_sparse_moe.switch_mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
790
- "model.layers.30.block_sparse_moe.switch_mlp.up_proj.biases": "model-00005-of-00005.safetensors",
791
- "model.layers.30.block_sparse_moe.switch_mlp.up_proj.scales": "model-00005-of-00005.safetensors",
792
- "model.layers.30.block_sparse_moe.switch_mlp.up_proj.weight": "model-00005-of-00005.safetensors",
793
- "model.layers.30.input_layernorm.bias": "model-00005-of-00005.safetensors",
794
- "model.layers.30.input_layernorm.weight": "model-00005-of-00005.safetensors",
795
- "model.layers.30.post_attention_layernorm.bias": "model-00005-of-00005.safetensors",
796
- "model.layers.30.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
797
- "model.layers.30.self_attn.k_proj.bias": "model-00005-of-00005.safetensors",
798
- "model.layers.30.self_attn.k_proj.biases": "model-00005-of-00005.safetensors",
799
- "model.layers.30.self_attn.k_proj.scales": "model-00005-of-00005.safetensors",
800
- "model.layers.30.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
801
- "model.layers.30.self_attn.o_proj.bias": "model-00005-of-00005.safetensors",
802
- "model.layers.30.self_attn.o_proj.biases": "model-00005-of-00005.safetensors",
803
- "model.layers.30.self_attn.o_proj.scales": "model-00005-of-00005.safetensors",
804
- "model.layers.30.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
805
- "model.layers.30.self_attn.q_proj.bias": "model-00005-of-00005.safetensors",
806
- "model.layers.30.self_attn.q_proj.biases": "model-00005-of-00005.safetensors",
807
- "model.layers.30.self_attn.q_proj.scales": "model-00005-of-00005.safetensors",
808
- "model.layers.30.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
809
- "model.layers.30.self_attn.v_proj.bias": "model-00005-of-00005.safetensors",
810
- "model.layers.30.self_attn.v_proj.biases": "model-00005-of-00005.safetensors",
811
- "model.layers.30.self_attn.v_proj.scales": "model-00005-of-00005.safetensors",
812
- "model.layers.30.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
813
- "model.layers.31.block_sparse_moe.gate.biases": "model-00005-of-00005.safetensors",
814
- "model.layers.31.block_sparse_moe.gate.scales": "model-00005-of-00005.safetensors",
815
- "model.layers.31.block_sparse_moe.gate.weight": "model-00005-of-00005.safetensors",
816
- "model.layers.31.block_sparse_moe.switch_mlp.down_proj.biases": "model-00005-of-00005.safetensors",
817
- "model.layers.31.block_sparse_moe.switch_mlp.down_proj.scales": "model-00005-of-00005.safetensors",
818
- "model.layers.31.block_sparse_moe.switch_mlp.down_proj.weight": "model-00005-of-00005.safetensors",
819
- "model.layers.31.block_sparse_moe.switch_mlp.gate_proj.biases": "model-00005-of-00005.safetensors",
820
- "model.layers.31.block_sparse_moe.switch_mlp.gate_proj.scales": "model-00005-of-00005.safetensors",
821
- "model.layers.31.block_sparse_moe.switch_mlp.gate_proj.weight": "model-00005-of-00005.safetensors",
822
- "model.layers.31.block_sparse_moe.switch_mlp.up_proj.biases": "model-00005-of-00005.safetensors",
823
- "model.layers.31.block_sparse_moe.switch_mlp.up_proj.scales": "model-00005-of-00005.safetensors",
824
- "model.layers.31.block_sparse_moe.switch_mlp.up_proj.weight": "model-00005-of-00005.safetensors",
825
- "model.layers.31.input_layernorm.bias": "model-00005-of-00005.safetensors",
826
- "model.layers.31.input_layernorm.weight": "model-00005-of-00005.safetensors",
827
- "model.layers.31.post_attention_layernorm.bias": "model-00005-of-00005.safetensors",
828
- "model.layers.31.post_attention_layernorm.weight": "model-00005-of-00005.safetensors",
829
- "model.layers.31.self_attn.k_proj.bias": "model-00005-of-00005.safetensors",
830
- "model.layers.31.self_attn.k_proj.biases": "model-00005-of-00005.safetensors",
831
- "model.layers.31.self_attn.k_proj.scales": "model-00005-of-00005.safetensors",
832
- "model.layers.31.self_attn.k_proj.weight": "model-00005-of-00005.safetensors",
833
- "model.layers.31.self_attn.o_proj.bias": "model-00005-of-00005.safetensors",
834
- "model.layers.31.self_attn.o_proj.biases": "model-00005-of-00005.safetensors",
835
- "model.layers.31.self_attn.o_proj.scales": "model-00005-of-00005.safetensors",
836
- "model.layers.31.self_attn.o_proj.weight": "model-00005-of-00005.safetensors",
837
- "model.layers.31.self_attn.q_proj.bias": "model-00005-of-00005.safetensors",
838
- "model.layers.31.self_attn.q_proj.biases": "model-00005-of-00005.safetensors",
839
- "model.layers.31.self_attn.q_proj.scales": "model-00005-of-00005.safetensors",
840
- "model.layers.31.self_attn.q_proj.weight": "model-00005-of-00005.safetensors",
841
- "model.layers.31.self_attn.v_proj.bias": "model-00005-of-00005.safetensors",
842
- "model.layers.31.self_attn.v_proj.biases": "model-00005-of-00005.safetensors",
843
- "model.layers.31.self_attn.v_proj.scales": "model-00005-of-00005.safetensors",
844
- "model.layers.31.self_attn.v_proj.weight": "model-00005-of-00005.safetensors",
845
- "model.layers.4.block_sparse_moe.gate.biases": "model-00001-of-00005.safetensors",
846
- "model.layers.4.block_sparse_moe.gate.scales": "model-00001-of-00005.safetensors",
847
- "model.layers.4.block_sparse_moe.gate.weight": "model-00001-of-00005.safetensors",
848
- "model.layers.4.block_sparse_moe.switch_mlp.down_proj.biases": "model-00001-of-00005.safetensors",
849
- "model.layers.4.block_sparse_moe.switch_mlp.down_proj.scales": "model-00001-of-00005.safetensors",
850
- "model.layers.4.block_sparse_moe.switch_mlp.down_proj.weight": "model-00001-of-00005.safetensors",
851
- "model.layers.4.block_sparse_moe.switch_mlp.gate_proj.biases": "model-00001-of-00005.safetensors",
852
- "model.layers.4.block_sparse_moe.switch_mlp.gate_proj.scales": "model-00001-of-00005.safetensors",
853
- "model.layers.4.block_sparse_moe.switch_mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
854
- "model.layers.4.block_sparse_moe.switch_mlp.up_proj.biases": "model-00001-of-00005.safetensors",
855
- "model.layers.4.block_sparse_moe.switch_mlp.up_proj.scales": "model-00001-of-00005.safetensors",
856
- "model.layers.4.block_sparse_moe.switch_mlp.up_proj.weight": "model-00001-of-00005.safetensors",
857
- "model.layers.4.input_layernorm.bias": "model-00001-of-00005.safetensors",
858
- "model.layers.4.input_layernorm.weight": "model-00001-of-00005.safetensors",
859
- "model.layers.4.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
860
- "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
861
- "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00005.safetensors",
862
- "model.layers.4.self_attn.k_proj.biases": "model-00001-of-00005.safetensors",
863
- "model.layers.4.self_attn.k_proj.scales": "model-00001-of-00005.safetensors",
864
- "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
865
- "model.layers.4.self_attn.o_proj.bias": "model-00001-of-00005.safetensors",
866
- "model.layers.4.self_attn.o_proj.biases": "model-00001-of-00005.safetensors",
867
- "model.layers.4.self_attn.o_proj.scales": "model-00001-of-00005.safetensors",
868
- "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
869
- "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
870
- "model.layers.4.self_attn.q_proj.biases": "model-00001-of-00005.safetensors",
871
- "model.layers.4.self_attn.q_proj.scales": "model-00001-of-00005.safetensors",
872
- "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
873
- "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
874
- "model.layers.4.self_attn.v_proj.biases": "model-00001-of-00005.safetensors",
875
- "model.layers.4.self_attn.v_proj.scales": "model-00001-of-00005.safetensors",
876
- "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
877
- "model.layers.5.block_sparse_moe.gate.biases": "model-00001-of-00005.safetensors",
878
- "model.layers.5.block_sparse_moe.gate.scales": "model-00001-of-00005.safetensors",
879
- "model.layers.5.block_sparse_moe.gate.weight": "model-00001-of-00005.safetensors",
880
- "model.layers.5.block_sparse_moe.switch_mlp.down_proj.biases": "model-00001-of-00005.safetensors",
881
- "model.layers.5.block_sparse_moe.switch_mlp.down_proj.scales": "model-00001-of-00005.safetensors",
882
- "model.layers.5.block_sparse_moe.switch_mlp.down_proj.weight": "model-00001-of-00005.safetensors",
883
- "model.layers.5.block_sparse_moe.switch_mlp.gate_proj.biases": "model-00001-of-00005.safetensors",
884
- "model.layers.5.block_sparse_moe.switch_mlp.gate_proj.scales": "model-00001-of-00005.safetensors",
885
- "model.layers.5.block_sparse_moe.switch_mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
886
- "model.layers.5.block_sparse_moe.switch_mlp.up_proj.biases": "model-00001-of-00005.safetensors",
887
- "model.layers.5.block_sparse_moe.switch_mlp.up_proj.scales": "model-00001-of-00005.safetensors",
888
- "model.layers.5.block_sparse_moe.switch_mlp.up_proj.weight": "model-00001-of-00005.safetensors",
889
- "model.layers.5.input_layernorm.bias": "model-00001-of-00005.safetensors",
890
- "model.layers.5.input_layernorm.weight": "model-00001-of-00005.safetensors",
891
- "model.layers.5.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
892
- "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
893
- "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00005.safetensors",
894
- "model.layers.5.self_attn.k_proj.biases": "model-00001-of-00005.safetensors",
895
- "model.layers.5.self_attn.k_proj.scales": "model-00001-of-00005.safetensors",
896
- "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
897
- "model.layers.5.self_attn.o_proj.bias": "model-00001-of-00005.safetensors",
898
- "model.layers.5.self_attn.o_proj.biases": "model-00001-of-00005.safetensors",
899
- "model.layers.5.self_attn.o_proj.scales": "model-00001-of-00005.safetensors",
900
- "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
901
- "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
902
- "model.layers.5.self_attn.q_proj.biases": "model-00001-of-00005.safetensors",
903
- "model.layers.5.self_attn.q_proj.scales": "model-00001-of-00005.safetensors",
904
- "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
905
- "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
906
- "model.layers.5.self_attn.v_proj.biases": "model-00001-of-00005.safetensors",
907
- "model.layers.5.self_attn.v_proj.scales": "model-00001-of-00005.safetensors",
908
- "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
909
- "model.layers.6.block_sparse_moe.gate.biases": "model-00001-of-00005.safetensors",
910
- "model.layers.6.block_sparse_moe.gate.scales": "model-00001-of-00005.safetensors",
911
- "model.layers.6.block_sparse_moe.gate.weight": "model-00001-of-00005.safetensors",
912
- "model.layers.6.block_sparse_moe.switch_mlp.down_proj.biases": "model-00001-of-00005.safetensors",
913
- "model.layers.6.block_sparse_moe.switch_mlp.down_proj.scales": "model-00001-of-00005.safetensors",
914
- "model.layers.6.block_sparse_moe.switch_mlp.down_proj.weight": "model-00001-of-00005.safetensors",
915
- "model.layers.6.block_sparse_moe.switch_mlp.gate_proj.biases": "model-00001-of-00005.safetensors",
916
- "model.layers.6.block_sparse_moe.switch_mlp.gate_proj.scales": "model-00001-of-00005.safetensors",
917
- "model.layers.6.block_sparse_moe.switch_mlp.gate_proj.weight": "model-00001-of-00005.safetensors",
918
- "model.layers.6.block_sparse_moe.switch_mlp.up_proj.biases": "model-00001-of-00005.safetensors",
919
- "model.layers.6.block_sparse_moe.switch_mlp.up_proj.scales": "model-00001-of-00005.safetensors",
920
- "model.layers.6.block_sparse_moe.switch_mlp.up_proj.weight": "model-00001-of-00005.safetensors",
921
- "model.layers.6.input_layernorm.bias": "model-00001-of-00005.safetensors",
922
- "model.layers.6.input_layernorm.weight": "model-00001-of-00005.safetensors",
923
- "model.layers.6.post_attention_layernorm.bias": "model-00001-of-00005.safetensors",
924
- "model.layers.6.post_attention_layernorm.weight": "model-00001-of-00005.safetensors",
925
- "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00005.safetensors",
926
- "model.layers.6.self_attn.k_proj.biases": "model-00001-of-00005.safetensors",
927
- "model.layers.6.self_attn.k_proj.scales": "model-00001-of-00005.safetensors",
928
- "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
929
- "model.layers.6.self_attn.o_proj.bias": "model-00001-of-00005.safetensors",
930
- "model.layers.6.self_attn.o_proj.biases": "model-00001-of-00005.safetensors",
931
- "model.layers.6.self_attn.o_proj.scales": "model-00001-of-00005.safetensors",
932
- "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
933
- "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
934
- "model.layers.6.self_attn.q_proj.biases": "model-00001-of-00005.safetensors",
935
- "model.layers.6.self_attn.q_proj.scales": "model-00001-of-00005.safetensors",
936
- "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
937
- "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
938
- "model.layers.6.self_attn.v_proj.biases": "model-00001-of-00005.safetensors",
939
- "model.layers.6.self_attn.v_proj.scales": "model-00001-of-00005.safetensors",
940
- "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
941
- "model.layers.7.block_sparse_moe.gate.biases": "model-00001-of-00005.safetensors",
942
- "model.layers.7.block_sparse_moe.gate.scales": "model-00001-of-00005.safetensors",
943
- "model.layers.7.block_sparse_moe.gate.weight": "model-00001-of-00005.safetensors",
944
- "model.layers.7.block_sparse_moe.switch_mlp.down_proj.biases": "model-00002-of-00005.safetensors",
945
- "model.layers.7.block_sparse_moe.switch_mlp.down_proj.scales": "model-00002-of-00005.safetensors",
946
- "model.layers.7.block_sparse_moe.switch_mlp.down_proj.weight": "model-00002-of-00005.safetensors",
947
- "model.layers.7.block_sparse_moe.switch_mlp.gate_proj.biases": "model-00002-of-00005.safetensors",
948
- "model.layers.7.block_sparse_moe.switch_mlp.gate_proj.scales": "model-00002-of-00005.safetensors",
949
- "model.layers.7.block_sparse_moe.switch_mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
950
- "model.layers.7.block_sparse_moe.switch_mlp.up_proj.biases": "model-00002-of-00005.safetensors",
951
- "model.layers.7.block_sparse_moe.switch_mlp.up_proj.scales": "model-00002-of-00005.safetensors",
952
- "model.layers.7.block_sparse_moe.switch_mlp.up_proj.weight": "model-00002-of-00005.safetensors",
953
- "model.layers.7.input_layernorm.bias": "model-00002-of-00005.safetensors",
954
- "model.layers.7.input_layernorm.weight": "model-00002-of-00005.safetensors",
955
- "model.layers.7.post_attention_layernorm.bias": "model-00002-of-00005.safetensors",
956
- "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
957
- "model.layers.7.self_attn.k_proj.bias": "model-00001-of-00005.safetensors",
958
- "model.layers.7.self_attn.k_proj.biases": "model-00001-of-00005.safetensors",
959
- "model.layers.7.self_attn.k_proj.scales": "model-00001-of-00005.safetensors",
960
- "model.layers.7.self_attn.k_proj.weight": "model-00001-of-00005.safetensors",
961
- "model.layers.7.self_attn.o_proj.bias": "model-00001-of-00005.safetensors",
962
- "model.layers.7.self_attn.o_proj.biases": "model-00001-of-00005.safetensors",
963
- "model.layers.7.self_attn.o_proj.scales": "model-00001-of-00005.safetensors",
964
- "model.layers.7.self_attn.o_proj.weight": "model-00001-of-00005.safetensors",
965
- "model.layers.7.self_attn.q_proj.bias": "model-00001-of-00005.safetensors",
966
- "model.layers.7.self_attn.q_proj.biases": "model-00001-of-00005.safetensors",
967
- "model.layers.7.self_attn.q_proj.scales": "model-00001-of-00005.safetensors",
968
- "model.layers.7.self_attn.q_proj.weight": "model-00001-of-00005.safetensors",
969
- "model.layers.7.self_attn.v_proj.bias": "model-00001-of-00005.safetensors",
970
- "model.layers.7.self_attn.v_proj.biases": "model-00001-of-00005.safetensors",
971
- "model.layers.7.self_attn.v_proj.scales": "model-00001-of-00005.safetensors",
972
- "model.layers.7.self_attn.v_proj.weight": "model-00001-of-00005.safetensors",
973
- "model.layers.8.block_sparse_moe.gate.biases": "model-00002-of-00005.safetensors",
974
- "model.layers.8.block_sparse_moe.gate.scales": "model-00002-of-00005.safetensors",
975
- "model.layers.8.block_sparse_moe.gate.weight": "model-00002-of-00005.safetensors",
976
- "model.layers.8.block_sparse_moe.switch_mlp.down_proj.biases": "model-00002-of-00005.safetensors",
977
- "model.layers.8.block_sparse_moe.switch_mlp.down_proj.scales": "model-00002-of-00005.safetensors",
978
- "model.layers.8.block_sparse_moe.switch_mlp.down_proj.weight": "model-00002-of-00005.safetensors",
979
- "model.layers.8.block_sparse_moe.switch_mlp.gate_proj.biases": "model-00002-of-00005.safetensors",
980
- "model.layers.8.block_sparse_moe.switch_mlp.gate_proj.scales": "model-00002-of-00005.safetensors",
981
- "model.layers.8.block_sparse_moe.switch_mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
982
- "model.layers.8.block_sparse_moe.switch_mlp.up_proj.biases": "model-00002-of-00005.safetensors",
983
- "model.layers.8.block_sparse_moe.switch_mlp.up_proj.scales": "model-00002-of-00005.safetensors",
984
- "model.layers.8.block_sparse_moe.switch_mlp.up_proj.weight": "model-00002-of-00005.safetensors",
985
- "model.layers.8.input_layernorm.bias": "model-00002-of-00005.safetensors",
986
- "model.layers.8.input_layernorm.weight": "model-00002-of-00005.safetensors",
987
- "model.layers.8.post_attention_layernorm.bias": "model-00002-of-00005.safetensors",
988
- "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
989
- "model.layers.8.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
990
- "model.layers.8.self_attn.k_proj.biases": "model-00002-of-00005.safetensors",
991
- "model.layers.8.self_attn.k_proj.scales": "model-00002-of-00005.safetensors",
992
- "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
993
- "model.layers.8.self_attn.o_proj.bias": "model-00002-of-00005.safetensors",
994
- "model.layers.8.self_attn.o_proj.biases": "model-00002-of-00005.safetensors",
995
- "model.layers.8.self_attn.o_proj.scales": "model-00002-of-00005.safetensors",
996
- "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
997
- "model.layers.8.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
998
- "model.layers.8.self_attn.q_proj.biases": "model-00002-of-00005.safetensors",
999
- "model.layers.8.self_attn.q_proj.scales": "model-00002-of-00005.safetensors",
1000
- "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
1001
- "model.layers.8.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
1002
- "model.layers.8.self_attn.v_proj.biases": "model-00002-of-00005.safetensors",
1003
- "model.layers.8.self_attn.v_proj.scales": "model-00002-of-00005.safetensors",
1004
- "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
1005
- "model.layers.9.block_sparse_moe.gate.biases": "model-00002-of-00005.safetensors",
1006
- "model.layers.9.block_sparse_moe.gate.scales": "model-00002-of-00005.safetensors",
1007
- "model.layers.9.block_sparse_moe.gate.weight": "model-00002-of-00005.safetensors",
1008
- "model.layers.9.block_sparse_moe.switch_mlp.down_proj.biases": "model-00002-of-00005.safetensors",
1009
- "model.layers.9.block_sparse_moe.switch_mlp.down_proj.scales": "model-00002-of-00005.safetensors",
1010
- "model.layers.9.block_sparse_moe.switch_mlp.down_proj.weight": "model-00002-of-00005.safetensors",
1011
- "model.layers.9.block_sparse_moe.switch_mlp.gate_proj.biases": "model-00002-of-00005.safetensors",
1012
- "model.layers.9.block_sparse_moe.switch_mlp.gate_proj.scales": "model-00002-of-00005.safetensors",
1013
- "model.layers.9.block_sparse_moe.switch_mlp.gate_proj.weight": "model-00002-of-00005.safetensors",
1014
- "model.layers.9.block_sparse_moe.switch_mlp.up_proj.biases": "model-00002-of-00005.safetensors",
1015
- "model.layers.9.block_sparse_moe.switch_mlp.up_proj.scales": "model-00002-of-00005.safetensors",
1016
- "model.layers.9.block_sparse_moe.switch_mlp.up_proj.weight": "model-00002-of-00005.safetensors",
1017
- "model.layers.9.input_layernorm.bias": "model-00002-of-00005.safetensors",
1018
- "model.layers.9.input_layernorm.weight": "model-00002-of-00005.safetensors",
1019
- "model.layers.9.post_attention_layernorm.bias": "model-00002-of-00005.safetensors",
1020
- "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00005.safetensors",
1021
- "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00005.safetensors",
1022
- "model.layers.9.self_attn.k_proj.biases": "model-00002-of-00005.safetensors",
1023
- "model.layers.9.self_attn.k_proj.scales": "model-00002-of-00005.safetensors",
1024
- "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00005.safetensors",
1025
- "model.layers.9.self_attn.o_proj.bias": "model-00002-of-00005.safetensors",
1026
- "model.layers.9.self_attn.o_proj.biases": "model-00002-of-00005.safetensors",
1027
- "model.layers.9.self_attn.o_proj.scales": "model-00002-of-00005.safetensors",
1028
- "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00005.safetensors",
1029
- "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00005.safetensors",
1030
- "model.layers.9.self_attn.q_proj.biases": "model-00002-of-00005.safetensors",
1031
- "model.layers.9.self_attn.q_proj.scales": "model-00002-of-00005.safetensors",
1032
- "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00005.safetensors",
1033
- "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00005.safetensors",
1034
- "model.layers.9.self_attn.v_proj.biases": "model-00002-of-00005.safetensors",
1035
- "model.layers.9.self_attn.v_proj.scales": "model-00002-of-00005.safetensors",
1036
- "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00005.safetensors",
1037
- "model.norm.bias": "model-00005-of-00005.safetensors",
1038
- "model.norm.weight": "model-00005-of-00005.safetensors"
1039
- }
1040
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
modeling_phimoe.py DELETED
@@ -1,1800 +0,0 @@
1
- # coding=utf-8
2
- # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
- #
4
- # Licensed under the Apache License, Version 2.0 (the "License");
5
- # you may not use this file except in compliance with the License.
6
- # You may obtain a copy of the License at
7
- #
8
- # http://www.apache.org/licenses/LICENSE-2.0
9
- #
10
- # Unless required by applicable law or agreed to in writing, software
11
- # distributed under the License is distributed on an "AS IS" BASIS,
12
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
- # See the License for the specific language governing permissions and
14
- # limitations under the License.
15
-
16
- """ PyTorch PhiMoE model."""
17
- import inspect
18
- import math
19
- import warnings
20
- from typing import List, Optional, Tuple, Union
21
-
22
- import torch
23
- import torch.nn.functional as F
24
- import torch.utils.checkpoint
25
- from torch import nn
26
- from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
27
-
28
- from transformers.activations import ACT2FN
29
- from transformers.cache_utils import Cache, DynamicCache
30
- from transformers.modeling_attn_mask_utils import (
31
- _prepare_4d_causal_attention_mask,
32
- _prepare_4d_causal_attention_mask_for_sdpa,
33
- )
34
- from transformers.modeling_outputs import (
35
- MoeCausalLMOutputWithPast,
36
- MoeModelOutputWithPast,
37
- SequenceClassifierOutputWithPast,
38
- )
39
- from transformers.modeling_utils import PreTrainedModel
40
- from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_13
41
- from transformers.utils import (
42
- add_start_docstrings,
43
- add_start_docstrings_to_model_forward,
44
- is_flash_attn_2_available,
45
- is_flash_attn_greater_or_equal_2_10,
46
- logging,
47
- replace_return_docstrings,
48
- )
49
- from transformers.utils.import_utils import is_torch_fx_available
50
- from .configuration_phimoe import PhiMoEConfig
51
-
52
- from einops import rearrange
53
- from flash_attn.layers.rotary import RotaryEmbedding as FlashRotaryEmbedding
54
-
55
-
56
- if is_flash_attn_2_available():
57
- from flash_attn import flash_attn_func, flash_attn_varlen_func
58
- from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
59
-
60
- _flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
61
-
62
- # This makes `_prepare_4d_causal_attention_mask` a leaf function in the FX graph.
63
- # It means that the function will not be traced through and simply appear as a node in the graph.
64
- if is_torch_fx_available():
65
- if not is_torch_greater_or_equal_than_1_13:
66
- import torch.fx
67
-
68
- _prepare_4d_causal_attention_mask = torch.fx.wrap(_prepare_4d_causal_attention_mask)
69
-
70
-
71
- logger = logging.get_logger(__name__)
72
-
73
- _CONFIG_FOR_DOC = "PhiMoEConfig"
74
-
75
-
76
- def load_balancing_loss_func(
77
- gate_logits: torch.Tensor, num_experts: torch.Tensor = None, top_k=2, attention_mask: Optional[torch.Tensor] = None
78
- ) -> float:
79
- r"""
80
- Computes auxiliary load balancing loss as in Switch Transformer - implemented in Pytorch.
81
-
82
- See Switch Transformer (https://arxiv.org/abs/2101.03961) for more details. This function implements the loss
83
- function presented in equations (4) - (6) of the paper. It aims at penalizing cases where the routing between
84
- experts is too unbalanced.
85
-
86
- Args:
87
- gate_logits (Union[`torch.Tensor`, Tuple[torch.Tensor]):
88
- Logits from the `gate`, should be a tuple of model.config.num_hidden_layers tensors of
89
- shape [batch_size X sequence_length, num_experts].
90
- attention_mask (`torch.Tensor`, None):
91
- The attention_mask used in forward function
92
- shape [batch_size X sequence_length] if not None.
93
- num_experts (`int`, *optional*):
94
- Number of experts
95
-
96
- Returns:
97
- The auxiliary loss.
98
- """
99
- if gate_logits is None or not isinstance(gate_logits, tuple):
100
- return 0
101
-
102
- if isinstance(gate_logits, tuple):
103
- compute_device = gate_logits[0].device
104
- concatenated_gate_logits = torch.cat([layer_gate.to(compute_device) for layer_gate in gate_logits], dim=0)
105
-
106
- routing_weights = torch.nn.functional.softmax(concatenated_gate_logits, dim=-1)
107
-
108
- _, selected_experts = torch.topk(routing_weights, top_k, dim=-1)
109
-
110
- expert_mask = torch.nn.functional.one_hot(selected_experts, num_experts)
111
-
112
- if attention_mask is None:
113
- # Compute the percentage of tokens routed to each experts
114
- tokens_per_expert = torch.mean(expert_mask.float(), dim=0)
115
-
116
- # Compute the average probability of routing to these experts
117
- router_prob_per_expert = torch.mean(routing_weights, dim=0)
118
- else:
119
- batch_size, sequence_length = attention_mask.shape
120
- num_hidden_layers = concatenated_gate_logits.shape[0] // (batch_size * sequence_length)
121
-
122
- # Compute the mask that masks all padding tokens as 0 with the same shape of expert_mask
123
- expert_attention_mask = (
124
- attention_mask[None, :, :, None, None]
125
- .expand((num_hidden_layers, batch_size, sequence_length, top_k, num_experts))
126
- .reshape(-1, top_k, num_experts)
127
- .to(compute_device)
128
- )
129
-
130
- # Compute the percentage of tokens routed to each experts
131
- tokens_per_expert = torch.sum(expert_mask.float() * expert_attention_mask, dim=0) / torch.sum(
132
- expert_attention_mask, dim=0
133
- )
134
-
135
- # Compute the mask that masks all padding tokens as 0 with the same shape of tokens_per_expert
136
- router_per_expert_attention_mask = (
137
- attention_mask[None, :, :, None]
138
- .expand((num_hidden_layers, batch_size, sequence_length, num_experts))
139
- .reshape(-1, num_experts)
140
- .to(compute_device)
141
- )
142
-
143
- # Compute the average probability of routing to these experts
144
- router_prob_per_expert = torch.sum(routing_weights * router_per_expert_attention_mask, dim=0) / torch.sum(
145
- router_per_expert_attention_mask, dim=0
146
- )
147
-
148
- overall_loss = torch.sum(tokens_per_expert * router_prob_per_expert.unsqueeze(0))
149
- return overall_loss * num_experts
150
-
151
-
152
- # Copied from transformers.models.llama.modeling_llama._get_unpad_data
153
- def _get_unpad_data(attention_mask):
154
- seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32)
155
- indices = torch.nonzero(attention_mask.flatten(), as_tuple=False).flatten()
156
- max_seqlen_in_batch = seqlens_in_batch.max().item()
157
- cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0))
158
- return (
159
- indices,
160
- cu_seqlens,
161
- max_seqlen_in_batch,
162
- )
163
-
164
-
165
- # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->PhiMoE
166
- ##https://dl.acm.org/doi/pdf/10.5555/3454287.3455397 The following is the implementation of layernorm
167
-
168
-
169
- class PhiMoERotaryEmbedding(nn.Module):
170
- def __init__(self, dim, max_position_embeddings=2048, base=10000, device=None):
171
- super().__init__()
172
-
173
- self.dim = dim
174
- self.max_position_embeddings = max_position_embeddings
175
- self.base = base
176
- inv_freq = 1.0 / (self.base ** (torch.arange(0, self.dim, 2, dtype=torch.int64).float().to(device) / self.dim))
177
- self.register_buffer("inv_freq", inv_freq, persistent=False)
178
-
179
- # Build here to make `torch.jit.trace` work.
180
- self._set_cos_sin_cache(
181
- seq_len=max_position_embeddings, device=self.inv_freq.device, dtype=torch.get_default_dtype()
182
- )
183
-
184
- def _set_cos_sin_cache(self, seq_len, device, dtype):
185
- self.max_seq_len_cached = seq_len
186
- t = torch.arange(self.max_seq_len_cached, device=device, dtype=torch.int64).type_as(self.inv_freq)
187
-
188
- freqs = torch.outer(t, self.inv_freq)
189
- # Different from paper, but it uses a different permutation in order to obtain the same calculation
190
- emb = torch.cat((freqs, freqs), dim=-1)
191
- self.register_buffer("cos_cached", emb.cos().to(dtype), persistent=False)
192
- self.register_buffer("sin_cached", emb.sin().to(dtype), persistent=False)
193
-
194
- def forward(self, x, seq_len=None):
195
- # x: [bs, num_attention_heads, seq_len, head_size]
196
- if seq_len > self.max_seq_len_cached:
197
- self._set_cos_sin_cache(seq_len=seq_len, device=x.device, dtype=x.dtype)
198
-
199
- return (
200
- self.cos_cached[:seq_len].to(dtype=x.dtype),
201
- self.sin_cached[:seq_len].to(dtype=x.dtype),
202
- )
203
-
204
-
205
- class Phi3LongRoPEScaledRotaryEmbedding(nn.Module):
206
-
207
- def __init__(self, dim, config):
208
- super().__init__()
209
- self.dim = dim
210
- self.max_position_embeddings = config.max_position_embeddings
211
- self.base = config.rope_theta
212
- self.short_factor = config.rope_scaling["short_factor"]
213
- self.long_factor = config.rope_scaling["long_factor"]
214
- self.short_mscale = config.rope_scaling["short_mscale"]
215
- self.long_mscale = config.rope_scaling["long_mscale"]
216
- self.original_max_position_embeddings = config.rope_scaling["original_max_position_embeddings"]
217
-
218
- def forward(self, x, seq_len=None):
219
- if seq_len is None:
220
- seq_len = x.shape[-2]
221
-
222
- if seq_len > self.original_max_position_embeddings:
223
- rescale_factors = torch.tensor(self.long_factor, dtype=torch.float32, device=x.device)
224
- mscale = self.long_mscale
225
- else:
226
- rescale_factors = torch.tensor(self.short_factor, dtype=torch.float32, device=x.device)
227
- mscale = self.short_mscale
228
- assert rescale_factors.shape == (self.dim // 2, ), \
229
- f"misaligned shape for LongRoPE rescale factors: {rescale_factors.shape}"
230
-
231
- inv_freq = 1.0 / (rescale_factors * (self.base ** (torch.arange(0, self.dim, 2).float().to(x.device) / self.dim)))
232
-
233
- t = torch.arange(seq_len, device=x.device, dtype=torch.float32)
234
- freqs = torch.outer(t, inv_freq)
235
-
236
- emb = torch.cat((freqs, freqs), dim=-1)
237
- return (emb.cos() * mscale).to(x.dtype), (emb.sin() * mscale).to(x.dtype)
238
-
239
-
240
- # Copied from transformers.models.llama.modeling_llama.rotate_half
241
- def rotate_half(x):
242
- """Rotates half the hidden dims of the input."""
243
- x1 = x[..., : x.shape[-1] // 2]
244
- x2 = x[..., x.shape[-1] // 2 :]
245
- return torch.cat((-x2, x1), dim=-1)
246
-
247
-
248
-
249
- def apply_rotary_pos_emb(q, k, cos, sin, position_ids, unsqueeze_dim=1):
250
- """Applies Rotary Position Embedding to the query and key tensors.
251
-
252
- Args:
253
- q (`torch.Tensor`): The query tensor.
254
- k (`torch.Tensor`): The key tensor.
255
- cos (`torch.Tensor`): The cosine part of the rotary embedding.
256
- sin (`torch.Tensor`): The sine part of the rotary embedding.
257
- position_ids (`torch.Tensor`):
258
- The position indices of the tokens corresponding to the query and key tensors. For example, this can be
259
- used to pass offsetted position ids when working with a KV-cache.
260
- unsqueeze_dim (`int`, *optional*, defaults to 1):
261
- The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and
262
- sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note
263
- that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and
264
- k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes
265
- cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have
266
- the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2.
267
- Returns:
268
- `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding.
269
- """
270
- cos = cos[position_ids].unsqueeze(unsqueeze_dim)
271
- sin = sin[position_ids].unsqueeze(unsqueeze_dim)
272
- q_embed = (q * cos) + (rotate_half(q) * sin)
273
- k_embed = (k * cos) + (rotate_half(k) * sin)
274
- return q_embed, k_embed
275
-
276
-
277
- # Copied from transformers.models.llama.modeling_llama.repeat_kv
278
- def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
279
- """
280
- This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
281
- num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
282
- """
283
- batch, num_key_value_heads, slen, head_dim = hidden_states.shape
284
- if n_rep == 1:
285
- return hidden_states
286
- hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
287
- return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
288
-
289
-
290
-
291
- class PhiMoEAttention(nn.Module):
292
- """
293
- Multi-headed attention from 'Attention Is All You Need' paper. Modified to use sliding window attention: Longformer
294
- and "Generating Long Sequences with Sparse Transformers".
295
- """
296
-
297
- def __init__(self, config: PhiMoEConfig, layer_idx: Optional[int] = None):
298
- super().__init__()
299
- self.config = config
300
- self.layer_idx = layer_idx
301
- if layer_idx is None:
302
- logger.warning_once(
303
- f"Instantiating {self.__class__.__name__} without passing a `layer_idx` is not recommended and will "
304
- "lead to errors during the forward call if caching is used. Please make sure to provide a `layer_idx` "
305
- "when creating this class."
306
- )
307
-
308
- self.hidden_size = config.hidden_size
309
- self.num_heads = config.num_attention_heads
310
- self.head_dim = self.hidden_size // self.num_heads
311
- self.num_key_value_heads = config.num_key_value_heads
312
- self.num_key_value_groups = self.num_heads // self.num_key_value_heads
313
- self.max_position_embeddings = config.max_position_embeddings
314
- self.rope_theta = config.rope_theta
315
- self.is_causal = True
316
- self.attention_dropout = config.attention_dropout
317
-
318
- if (self.head_dim * self.num_heads) != self.hidden_size:
319
- raise ValueError(
320
- f"hidden_size must be divisible by num_heads (got `hidden_size`: {self.hidden_size}"
321
- f" and `num_heads`: {self.num_heads})."
322
- )
323
- self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=self.config.attention_bias)
324
- self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=self.config.attention_bias)
325
- self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=self.config.attention_bias)
326
- self.o_proj = nn.Linear(self.num_heads * self.head_dim, self.hidden_size, bias=self.config.attention_bias)
327
-
328
- if getattr(config, 'rope_scaling', None) is None:
329
- self.rotary_emb = PhiMoERotaryEmbedding(
330
- self.head_dim,
331
- max_position_embeddings=self.max_position_embeddings,
332
- base=self.rope_theta,
333
- )
334
- else:
335
- scaling_type = self.config.rope_scaling["type"]
336
- if scaling_type == "longrope":
337
- self.rotary_emb = Phi3LongRoPEScaledRotaryEmbedding(self.head_dim, self.config)
338
- else:
339
- raise ValueError(f"Unknown RoPE scaling type {scaling_type}")
340
-
341
- def _shape(self, tensor: torch.Tensor, seq_len: int, bsz: int):
342
- return tensor.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2).contiguous()
343
-
344
- def forward(
345
- self,
346
- hidden_states: torch.Tensor,
347
- attention_mask: Optional[torch.Tensor] = None,
348
- position_ids: Optional[torch.LongTensor] = None,
349
- past_key_value: Optional[Cache] = None,
350
- output_attentions: bool = False,
351
- use_cache: bool = False,
352
- **kwargs,
353
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
354
- if "padding_mask" in kwargs:
355
- warnings.warn(
356
- "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
357
- )
358
- bsz, q_len, _ = hidden_states.size()
359
-
360
- query_states = self.q_proj(hidden_states)
361
- key_states = self.k_proj(hidden_states)
362
- value_states = self.v_proj(hidden_states)
363
-
364
- query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
365
- key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
366
- value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
367
-
368
- kv_seq_len = key_states.shape[-2]
369
- if past_key_value is not None:
370
- if self.layer_idx is None:
371
- raise ValueError(
372
- f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
373
- "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
374
- "with a layer index."
375
- )
376
- kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
377
-
378
- # print ("before apply rotary pos_emb", len(kv_seq_len),torch.norm(value_states).items(),\
379
- # torch.norm(query_states).items(), torch.norm(key_states).items(), position_ids)
380
- cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
381
- query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
382
-
383
- # print ('after pos emb', torch.norm(query_states).item(), torch.norm(key_states).items())
384
- if past_key_value is not None:
385
- cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
386
- key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
387
-
388
- # repeat k/v heads if n_kv_heads < n_heads
389
- key_states = repeat_kv(key_states, self.num_key_value_groups)
390
- value_states = repeat_kv(value_states, self.num_key_value_groups)
391
-
392
- attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
393
-
394
- if attn_weights.size() != (bsz, self.num_heads, q_len, kv_seq_len):
395
- raise ValueError(
396
- f"Attention weights should be of size {(bsz, self.num_heads, q_len, kv_seq_len)}, but is"
397
- f" {attn_weights.size()}"
398
- )
399
-
400
- if attention_mask is not None:
401
- if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
402
- raise ValueError(
403
- f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
404
- )
405
-
406
- attn_weights = attn_weights + attention_mask
407
-
408
- # upcast attention to fp32
409
- attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query_states.dtype)
410
- attn_weights = nn.functional.dropout(attn_weights, p=self.attention_dropout, training=self.training)
411
- attn_output = torch.matmul(attn_weights, value_states)
412
-
413
- if attn_output.size() != (bsz, self.num_heads, q_len, self.head_dim):
414
- raise ValueError(
415
- f"`attn_output` should be of size {(bsz, self.num_heads, q_len, self.head_dim)}, but is"
416
- f" {attn_output.size()}"
417
- )
418
-
419
- attn_output = attn_output.transpose(1, 2).contiguous()
420
- attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
421
-
422
- attn_output = self.o_proj(attn_output)
423
-
424
- if not output_attentions:
425
- attn_weights = None
426
-
427
- return attn_output, attn_weights, past_key_value
428
-
429
-
430
-
431
- class PhiMoEFlashAttention2(PhiMoEAttention):
432
- """
433
- PhiMoE flash attention module. This module inherits from `PhiMoEAttention` as the weights of the module stays
434
- untouched. The only required change would be on the forward pass where it needs to correctly call the public API of
435
- flash attention and deal with padding tokens in case the input contains any of them.
436
- """
437
-
438
- # Copied from transformers.models.llama.modeling_llama.LlamaFlashAttention2.__init__
439
- def __init__(self, *args, **kwargs):
440
- super().__init__(*args, **kwargs)
441
-
442
- # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1.
443
- # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0.
444
- # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left).
445
- self._flash_attn_uses_top_left_mask = not is_flash_attn_greater_or_equal_2_10()
446
-
447
- def forward(
448
- self,
449
- hidden_states: torch.Tensor,
450
- attention_mask: Optional[torch.Tensor] = None,
451
- position_ids: Optional[torch.LongTensor] = None,
452
- past_key_value: Optional[Cache] = None,
453
- output_attentions: bool = False,
454
- use_cache: bool = False,
455
- **kwargs,
456
- ):
457
- if "padding_mask" in kwargs:
458
- warnings.warn(
459
- "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
460
- )
461
-
462
- # overwrite attention_mask with padding_mask
463
- attention_mask = kwargs.pop("padding_mask")
464
- bsz, q_len, _ = hidden_states.size()
465
-
466
- query_states = self.q_proj(hidden_states)
467
- key_states = self.k_proj(hidden_states)
468
- value_states = self.v_proj(hidden_states)
469
-
470
- query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
471
- key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
472
- value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
473
-
474
- kv_seq_len = key_states.shape[-2]
475
- if past_key_value is not None:
476
- if self.layer_idx is None:
477
- raise ValueError(
478
- f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
479
- "for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
480
- "with a layer index."
481
- )
482
- kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
483
-
484
- # Because the input can be padded, the absolute sequence length depends on the max position id.
485
- rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item() + 1)
486
- cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
487
-
488
- query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
489
-
490
- use_sliding_windows = (
491
- _flash_supports_window_size
492
- and getattr(self.config, "sliding_window", None) is not None
493
- and kv_seq_len > self.config.sliding_window
494
- )
495
-
496
- if not _flash_supports_window_size:
497
- logger.warning_once(
498
- "The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
499
- " make sure to upgrade flash-attn library."
500
- )
501
-
502
- if past_key_value is not None:
503
- # Activate slicing cache only if the config has a value `sliding_windows` attribute
504
- cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
505
- if (
506
- getattr(self.config, "sliding_window", None) is not None
507
- and kv_seq_len > self.config.sliding_window
508
- and cache_has_contents
509
- ):
510
- slicing_tokens = 1 - self.config.sliding_window
511
-
512
- past_key = past_key_value[self.layer_idx][0]
513
- past_value = past_key_value[self.layer_idx][1]
514
-
515
- past_key = past_key[:, :, slicing_tokens:, :].contiguous()
516
- past_value = past_value[:, :, slicing_tokens:, :].contiguous()
517
-
518
- if past_key.shape[-2] != self.config.sliding_window - 1:
519
- raise ValueError(
520
- f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
521
- f" {past_key.shape}"
522
- )
523
-
524
- if attention_mask is not None:
525
- attention_mask = attention_mask[:, slicing_tokens:]
526
- attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
527
-
528
- cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
529
- key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
530
-
531
- # repeat k/v heads if n_kv_heads < n_heads
532
- key_states = repeat_kv(key_states, self.num_key_value_groups)
533
- value_states = repeat_kv(value_states, self.num_key_value_groups)
534
- dropout_rate = 0.0 if not self.training else self.attention_dropout
535
-
536
- # In PEFT, usually we cast the layer norms in float32 for training stability reasons
537
- # therefore the input hidden states gets silently casted in float32. Hence, we need
538
- # cast them back in float16 just to be sure everything works as expected.
539
- input_dtype = query_states.dtype
540
- if input_dtype == torch.float32:
541
- if torch.is_autocast_enabled():
542
- target_dtype = torch.get_autocast_gpu_dtype()
543
- # Handle the case where the model is quantized
544
- elif hasattr(self.config, "_pre_quantization_dtype"):
545
- target_dtype = self.config._pre_quantization_dtype
546
- else:
547
- target_dtype = self.q_proj.weight.dtype
548
-
549
- logger.warning_once(
550
- f"The input hidden states seems to be silently casted in float32, this might be related to"
551
- f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
552
- f" {target_dtype}."
553
- )
554
-
555
- query_states = query_states.to(target_dtype)
556
- key_states = key_states.to(target_dtype)
557
- value_states = value_states.to(target_dtype)
558
-
559
- # Reashape to the expected shape for Flash Attention
560
- query_states = query_states.transpose(1, 2)
561
- key_states = key_states.transpose(1, 2)
562
- value_states = value_states.transpose(1, 2)
563
-
564
- attn_output = self._flash_attention_forward(
565
- query_states,
566
- key_states,
567
- value_states,
568
- attention_mask,
569
- q_len,
570
- dropout=dropout_rate,
571
- use_sliding_windows=use_sliding_windows,
572
- )
573
-
574
- attn_output = attn_output.reshape(bsz, q_len, self.hidden_size).contiguous()
575
- attn_output = self.o_proj(attn_output)
576
-
577
- if not output_attentions:
578
- attn_weights = None
579
-
580
- return attn_output, attn_weights, past_key_value
581
-
582
- def _flash_attention_forward(
583
- self,
584
- query_states,
585
- key_states,
586
- value_states,
587
- attention_mask,
588
- query_length,
589
- dropout=0.0,
590
- softmax_scale=None,
591
- use_sliding_windows=False,
592
- ):
593
- """
594
- Calls the forward method of Flash Attention - if the input hidden states contain at least one padding token
595
- first unpad the input, then computes the attention scores and pad the final attention scores.
596
-
597
- Args:
598
- query_states (`torch.Tensor`):
599
- Input query states to be passed to Flash Attention API
600
- key_states (`torch.Tensor`):
601
- Input key states to be passed to Flash Attention API
602
- value_states (`torch.Tensor`):
603
- Input value states to be passed to Flash Attention API
604
- attention_mask (`torch.Tensor`):
605
- The padding mask - corresponds to a tensor of size `(batch_size, seq_len)` where 0 stands for the
606
- position of padding tokens and 1 for the position of non-padding tokens.
607
- dropout (`float`):
608
- Attention dropout
609
- softmax_scale (`float`, *optional*):
610
- The scaling of QK^T before applying softmax. Default to 1 / sqrt(head_dim)
611
- use_sliding_windows (`bool`, *optional*):
612
- Whether to activate sliding window attention.
613
- """
614
- if not self._flash_attn_uses_top_left_mask:
615
- causal = self.is_causal
616
- else:
617
- # TODO: Remove the `query_length != 1` check once Flash Attention for RoCm is bumped to 2.1. For details, please see the comment in LlamaFlashAttention2 __init__.
618
- causal = self.is_causal and query_length != 1
619
-
620
- # Contains at least one padding token in the sequence
621
- if attention_mask is not None:
622
- batch_size = query_states.shape[0]
623
- query_states, key_states, value_states, indices_q, cu_seq_lens, max_seq_lens = self._upad_input(
624
- query_states, key_states, value_states, attention_mask, query_length
625
- )
626
-
627
- cu_seqlens_q, cu_seqlens_k = cu_seq_lens
628
- max_seqlen_in_batch_q, max_seqlen_in_batch_k = max_seq_lens
629
-
630
- if not use_sliding_windows:
631
- attn_output_unpad = flash_attn_varlen_func(
632
- query_states,
633
- key_states,
634
- value_states,
635
- cu_seqlens_q=cu_seqlens_q,
636
- cu_seqlens_k=cu_seqlens_k,
637
- max_seqlen_q=max_seqlen_in_batch_q,
638
- max_seqlen_k=max_seqlen_in_batch_k,
639
- dropout_p=dropout,
640
- softmax_scale=softmax_scale,
641
- causal=causal,
642
- )
643
- else:
644
- attn_output_unpad = flash_attn_varlen_func(
645
- query_states,
646
- key_states,
647
- value_states,
648
- cu_seqlens_q=cu_seqlens_q,
649
- cu_seqlens_k=cu_seqlens_k,
650
- max_seqlen_q=max_seqlen_in_batch_q,
651
- max_seqlen_k=max_seqlen_in_batch_k,
652
- dropout_p=dropout,
653
- softmax_scale=softmax_scale,
654
- causal=causal,
655
- window_size=(self.config.sliding_window, 0),
656
- )
657
-
658
- attn_output = pad_input(attn_output_unpad, indices_q, batch_size, query_length)
659
- else:
660
- if not use_sliding_windows:
661
- attn_output = flash_attn_func(
662
- query_states,
663
- key_states,
664
- value_states,
665
- dropout,
666
- softmax_scale=softmax_scale,
667
- causal=causal,
668
- )
669
- else:
670
- attn_output = flash_attn_func(
671
- query_states,
672
- key_states,
673
- value_states,
674
- dropout,
675
- softmax_scale=softmax_scale,
676
- causal=causal,
677
- window_size=(self.config.sliding_window, 0),
678
- )
679
-
680
- return attn_output
681
-
682
- def _upad_input(self, query_layer, key_layer, value_layer, attention_mask, query_length):
683
- batch_size, kv_seq_len, num_heads, head_dim = key_layer.shape
684
-
685
- # On the first iteration we need to properly re-create the padding mask
686
- # by slicing it on the proper place
687
- if kv_seq_len != attention_mask.shape[-1]:
688
- attention_mask_num_tokens = attention_mask.shape[-1]
689
- attention_mask = attention_mask[:, attention_mask_num_tokens - kv_seq_len :]
690
-
691
- indices_k, cu_seqlens_k, max_seqlen_in_batch_k = _get_unpad_data(attention_mask)
692
-
693
- key_layer = index_first_axis(key_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
694
- value_layer = index_first_axis(value_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k)
695
-
696
- if query_length == kv_seq_len:
697
- query_layer = index_first_axis(
698
- query_layer.reshape(batch_size * kv_seq_len, num_heads, head_dim), indices_k
699
- )
700
- cu_seqlens_q = cu_seqlens_k
701
- max_seqlen_in_batch_q = max_seqlen_in_batch_k
702
- indices_q = indices_k
703
- elif query_length == 1:
704
- max_seqlen_in_batch_q = 1
705
- cu_seqlens_q = torch.arange(
706
- batch_size + 1, dtype=torch.int32, device=query_layer.device
707
- ) # There is a memcpy here, that is very bad.
708
- indices_q = cu_seqlens_q[:-1]
709
- query_layer = query_layer.squeeze(1)
710
- else:
711
- # The -q_len: slice assumes left padding.
712
- attention_mask = attention_mask[:, -query_length:]
713
- query_layer, indices_q, cu_seqlens_q, max_seqlen_in_batch_q = unpad_input(query_layer, attention_mask)
714
-
715
- return (
716
- query_layer,
717
- key_layer,
718
- value_layer,
719
- indices_q,
720
- (cu_seqlens_q, cu_seqlens_k),
721
- (max_seqlen_in_batch_q, max_seqlen_in_batch_k),
722
- )
723
-
724
-
725
-
726
- class PhiMoESdpaAttention(PhiMoEAttention):
727
- """
728
- PhiMoE attention module using torch.nn.functional.scaled_dot_product_attention. This module inherits from
729
- `PhiMoEAttention` as the weights of the module stays untouched. The only changes are on the forward pass to adapt to
730
- SDPA API.
731
- """
732
-
733
- # Adapted from PhiMoEAttention.forward
734
- def forward(
735
- self,
736
- hidden_states: torch.Tensor,
737
- attention_mask: Optional[torch.Tensor] = None,
738
- position_ids: Optional[torch.LongTensor] = None,
739
- past_key_value: Optional[Cache] = None,
740
- output_attentions: bool = False,
741
- use_cache: bool = False,
742
- ) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
743
- if output_attentions:
744
- # TODO: Improve this warning with e.g. `model.config.attn_implementation = "manual"` once this is implemented.
745
- logger.warning_once(
746
- "PhiMoEModel is using PhiMoESdpaAttention, but `torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to the manual attention implementation, "
747
- 'but specifying the manual implementation will be required from Transformers version v5.0.0 onwards. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.'
748
- )
749
- return super().forward(
750
- hidden_states=hidden_states,
751
- attention_mask=attention_mask,
752
- position_ids=position_ids,
753
- past_key_value=past_key_value,
754
- output_attentions=output_attentions,
755
- use_cache=use_cache,
756
- )
757
-
758
- bsz, q_len, _ = hidden_states.size()
759
-
760
- query_states = self.q_proj(hidden_states)
761
- key_states = self.k_proj(hidden_states)
762
- value_states = self.v_proj(hidden_states)
763
-
764
- query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
765
- key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
766
- value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
767
-
768
- kv_seq_len = key_states.shape[-2]
769
- if past_key_value is not None:
770
- kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
771
- cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
772
-
773
- query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
774
-
775
- if past_key_value is not None:
776
- cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
777
- key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
778
-
779
- key_states = repeat_kv(key_states, self.num_key_value_groups)
780
- value_states = repeat_kv(value_states, self.num_key_value_groups)
781
-
782
- if attention_mask is not None:
783
- if attention_mask.size() != (bsz, 1, q_len, kv_seq_len):
784
- raise ValueError(
785
- f"Attention mask should be of size {(bsz, 1, q_len, kv_seq_len)}, but is {attention_mask.size()}"
786
- )
787
-
788
- # SDPA with memory-efficient backend is currently (torch==2.1.2) bugged with non-contiguous inputs with custom attn_mask,
789
- # Reference: https://github.com/pytorch/pytorch/issues/112577.
790
- if query_states.device.type == "cuda" and attention_mask is not None:
791
- query_states = query_states.contiguous()
792
- key_states = key_states.contiguous()
793
- value_states = value_states.contiguous()
794
-
795
- attn_output = torch.nn.functional.scaled_dot_product_attention(
796
- query_states,
797
- key_states,
798
- value_states,
799
- attn_mask=attention_mask,
800
- dropout_p=self.attention_dropout if self.training else 0.0,
801
- # The q_len > 1 is necessary to match with AttentionMaskConverter.to_causal_4d that does not create a causal mask in case q_len == 1.
802
- is_causal=self.is_causal and attention_mask is None and q_len > 1,
803
- )
804
-
805
- attn_output = attn_output.transpose(1, 2).contiguous()
806
- attn_output = attn_output.view(bsz, q_len, self.hidden_size)
807
-
808
- attn_output = self.o_proj(attn_output)
809
-
810
- return attn_output, None, past_key_value
811
-
812
-
813
- PHIMOE_ATTENTION_CLASSES = {
814
- "eager": PhiMoEAttention,
815
- "flash_attention_2": PhiMoEFlashAttention2,
816
- "sdpa": PhiMoESdpaAttention,
817
- }
818
-
819
-
820
- class PhiMoEBlockSparseTop2MLP(nn.Module):
821
- def __init__(self, config: PhiMoEConfig):
822
- super().__init__()
823
- self.ffn_dim = config.intermediate_size
824
- self.hidden_dim = config.hidden_size
825
-
826
- self.w1 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
827
- self.w2 = nn.Linear(self.ffn_dim, self.hidden_dim, bias=False)
828
- self.w3 = nn.Linear(self.hidden_dim, self.ffn_dim, bias=False)
829
-
830
- self.act_fn = ACT2FN[config.hidden_act]
831
-
832
- def forward(self, hidden_states):
833
- current_hidden_states = self.act_fn(self.w1(hidden_states)) * self.w3(hidden_states)
834
- current_hidden_states = self.w2(current_hidden_states)
835
- return current_hidden_states
836
-
837
-
838
- class PhiMoEBLockSparseTop2MLP(PhiMoEBlockSparseTop2MLP):
839
- def __init__(self, *args, **kwargs):
840
- logger.warning_once(
841
- "PhiMoEBLockSparseTop2MLP is deprecated by PhiMoEBlockSparseTop2MLP and will be removed in v4.40."
842
- )
843
- super().__init__(*args, **kwargs)
844
-
845
-
846
- class mp(torch.autograd.Function):
847
- @staticmethod
848
- def forward(
849
- ctx,
850
- scores: torch.Tensor,
851
- multiplier: torch.Tensor,
852
- selected_experts: torch.Tensor,
853
- masked_gates: torch.Tensor,
854
- mask_for_one: torch.Tensor,
855
- ):
856
- ctx.save_for_backward(multiplier, selected_experts, masked_gates)
857
- return multiplier * mask_for_one
858
-
859
- @staticmethod
860
- def backward(
861
- ctx,
862
- grad_at_output: torch.Tensor,
863
- ):
864
- multiplier, selected_experts, masked_gates = ctx.saved_tensors
865
-
866
- grad_at_output = grad_at_output * multiplier
867
-
868
- grad_at_scores_expaned = masked_gates * grad_at_output.mul(-1)
869
- grad_at_scores_expaned.scatter_add_(
870
- dim=-1,
871
- index=selected_experts,
872
- src=grad_at_output,
873
- )
874
-
875
- return (
876
- grad_at_scores_expaned,
877
- None,
878
- None,
879
- None,
880
- None,
881
- )
882
-
883
- def sparsemixer(scores, top_k, jitter_eps, training):
884
- assert top_k == 2
885
-
886
- ################ first expert ################
887
-
888
- with torch.no_grad():
889
- # compute mask for sparsity
890
- mask_logits_threshold, max_ind = scores.max(dim=-1, keepdim=True)
891
- factor = scores.abs().clamp(min=mask_logits_threshold)
892
- mask_logits_threshold = (
893
- (mask_logits_threshold - scores) / factor
894
- ) > (2 * jitter_eps)
895
-
896
- # apply mask
897
- masked_gates = scores.masked_fill(mask_logits_threshold, float('-inf'))
898
- if training:
899
- selected_experts = (
900
- masked_gates - torch.empty_like(masked_gates, memory_format=torch.legacy_contiguous_format).exponential_().log()
901
- ).max(dim=-1)[1].unsqueeze(-1) # gumbel sampling, more robust than than the multinomial method
902
- else:
903
- selected_experts = max_ind
904
-
905
- # compute scores for gradients
906
- masked_gates = torch.softmax(masked_gates, dim=-1)
907
- multiplier_o = masked_gates.gather(dim=-1, index=selected_experts)
908
-
909
- if training:
910
- # compute midpoint mask
911
- max_scores, max_ind = masked_gates.max(dim=-1, keepdim=True)
912
- mask_for_one = torch.logical_or(
913
- selected_experts == max_ind,
914
- torch.rand_like(max_scores) > 0.75 # Heun's third-order method: f(x) - f(0) = .25 f'(x) + .75 f'(x/3.)
915
- )
916
- # 1 -> 1.0 & 0 -> 1./3: lambda x: (x + 0.5) / 1.5
917
- mask_for_one = torch.add(0.3333, mask_for_one, alpha=0.6667).type_as(masked_gates)
918
-
919
- multiplier = mp.apply(
920
- scores,
921
- multiplier_o,
922
- selected_experts,
923
- masked_gates,
924
- mask_for_one,
925
- )
926
- else:
927
- multiplier = multiplier_o
928
-
929
- # masked out first expert
930
- masked_scores = torch.scatter(
931
- scores,
932
- -1,
933
- selected_experts,
934
- float('-inf'),
935
- )
936
- with torch.no_grad():
937
- # compute mask for sparsity
938
- mask_logits_threshold, max_ind = masked_scores.max(dim=-1, keepdim=True)
939
- factor = scores.abs().clamp(min=mask_logits_threshold)
940
- mask_logits_threshold = (
941
- (mask_logits_threshold - scores) / factor
942
- ) > (2 * jitter_eps)
943
-
944
- # apply mask
945
- masked_gates_top2 = masked_scores.masked_fill(mask_logits_threshold, float('-inf'))
946
- if training:
947
- selected_experts_top2 = (
948
- masked_gates_top2 - torch.empty_like(masked_gates_top2, memory_format=torch.legacy_contiguous_format).exponential_().log()
949
- ).max(dim=-1)[1].unsqueeze(-1) # gumbel sampling, more robust than than the multinomial method
950
- else:
951
- selected_experts_top2 = max_ind
952
- # compute scores for gradients
953
- masked_gates_top2 = torch.softmax(masked_gates_top2, dim=-1)
954
- multiplier_top2_o = masked_gates_top2.gather(dim=-1, index=selected_experts_top2)
955
-
956
- if training:
957
- # compute midpoint mask
958
- max_scores, max_ind = masked_gates_top2.max(dim=-1, keepdim=True)
959
- mask_for_one_top2 = torch.logical_or(
960
- selected_experts_top2 == max_ind,
961
- torch.rand_like(max_scores).uniform_() > 0.75 # Heun's third-order method: f(x) - f(0) = .25 f'(x) + .75 f'(x/3.)
962
- )
963
- # 1 -> 1.0 & 0 -> 1./3: lambda x: (x + 0.5) / 1.5
964
- mask_for_one_top2 = torch.add(0.3333, mask_for_one_top2, alpha=0.6667).type_as(masked_gates_top2)
965
-
966
- multiplier_top2 = mp.apply(
967
- scores,
968
- multiplier_top2_o,
969
- selected_experts_top2,
970
- masked_gates_top2,
971
- mask_for_one_top2,
972
- )
973
- else:
974
- multiplier_top2 = multiplier_top2_o
975
-
976
- multiplier = torch.concat((multiplier, multiplier_top2), dim=-1)
977
- selected_experts = torch.concat((selected_experts, selected_experts_top2), dim=-1)
978
-
979
- return (
980
- multiplier,
981
- selected_experts,
982
- )
983
-
984
- iterations = 0
985
- class PhiMoESparseMoeBlock(nn.Module):
986
- """
987
- This implementation is
988
- strictly equivalent to standard MoE with full capacity (no
989
- dropped tokens). It's faster since it formulates MoE operations
990
- in terms of block-sparse operations to accomodate imbalanced
991
- assignments of tokens to experts, whereas standard MoE either
992
- (1) drop tokens at the cost of reduced performance or (2) set
993
- capacity factor to number of experts and thus waste computation
994
- and memory on padding.
995
- """
996
-
997
- def __init__(self, config):
998
- super().__init__()
999
- self.hidden_dim = config.hidden_size
1000
- self.ffn_dim = config.intermediate_size
1001
- self.num_experts = config.num_local_experts
1002
- self.top_k = config.num_experts_per_tok
1003
- global iterations
1004
- iterations +=1
1005
- self.iter = iterations
1006
- # gating
1007
- self.gate = nn.Linear(self.hidden_dim, self.num_experts, bias=False)
1008
-
1009
- self.experts = nn.ModuleList([PhiMoEBlockSparseTop2MLP(config) for _ in range(self.num_experts)])
1010
-
1011
- # Jitter parameters
1012
- self.router_jitter_noise = config.router_jitter_noise
1013
- self.input_jitter_noise = config.input_jitter_noise
1014
-
1015
- def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
1016
- """ """
1017
- batch_size, sequence_length, hidden_dim = hidden_states.shape
1018
- if self.training and self.input_jitter_noise > 0:
1019
- hidden_states *= torch.empty_like(hidden_states).uniform_(1.0 - self.input_jitter_noise, 1.0 + self.input_jitter_noise)
1020
- hidden_states = hidden_states.view(-1, hidden_dim)
1021
- # router_logits: (batch * sequence_length, n_experts)
1022
- # print ( 'moe', self.iter, torch.norm(hidden_states).item())
1023
- router_logits = self.gate(hidden_states)
1024
-
1025
- routing_weights, selected_experts = sparsemixer(
1026
- router_logits,
1027
- top_k=2,
1028
- jitter_eps=self.router_jitter_noise,
1029
- training=self.training,
1030
- )
1031
-
1032
- final_hidden_states = torch.zeros(
1033
- (batch_size * sequence_length, hidden_dim), dtype=hidden_states.dtype, device=hidden_states.device
1034
- )
1035
-
1036
- # One hot encode the selected experts to create an expert mask
1037
- # this will be used to easily index which expert is going to be sollicitated
1038
- expert_mask = torch.nn.functional.one_hot(selected_experts, num_classes=self.num_experts).permute(2, 1, 0)
1039
-
1040
- # Loop over all available experts in the model and perform the computation on each expert
1041
- for expert_idx in range(self.num_experts):
1042
- expert_layer = self.experts[expert_idx]
1043
- idx, top_x = torch.where(expert_mask[expert_idx])
1044
-
1045
- if top_x.shape[0] == 0:
1046
- continue
1047
-
1048
- # in torch it is faster to index using lists than torch tensors
1049
- top_x_list = top_x.tolist()
1050
- idx_list = idx.tolist()
1051
-
1052
- # Index the correct hidden states and compute the expert hidden state for
1053
- # the current expert. We need to make sure to multiply the output hidden
1054
- # states by `routing_weights` on the corresponding tokens (top-1 and top-2)
1055
- current_state = hidden_states[None, top_x_list].reshape(-1, hidden_dim)
1056
- current_hidden_states = expert_layer(current_state) * routing_weights[top_x_list, idx_list, None]
1057
-
1058
- # However `index_add_` only support torch tensors for indexing so we'll use
1059
- # the `top_x` tensor here.
1060
- final_hidden_states.index_add_(0, top_x, current_hidden_states.to(hidden_states.dtype))
1061
- final_hidden_states = final_hidden_states.reshape(batch_size, sequence_length, hidden_dim)
1062
- # print ( 'moe', self.iter, torch.norm(final_hidden_states).item())
1063
- return final_hidden_states, router_logits
1064
-
1065
-
1066
- class PhiMoEDecoderLayer(nn.Module):
1067
- def __init__(self, config: PhiMoEConfig, layer_idx: int):
1068
- super().__init__()
1069
- self.hidden_size = config.hidden_size
1070
-
1071
- self.self_attn = PHIMOE_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx)
1072
-
1073
- self.block_sparse_moe = PhiMoESparseMoeBlock(config)
1074
- self.input_layernorm = nn.LayerNorm(config.hidden_size, eps=config.rms_norm_eps, elementwise_affine=True)
1075
- self.post_attention_layernorm = nn.LayerNorm(config.hidden_size, eps=config.rms_norm_eps, elementwise_affine=True)
1076
-
1077
- def forward(
1078
- self,
1079
- hidden_states: torch.Tensor,
1080
- attention_mask: Optional[torch.Tensor] = None,
1081
- position_ids: Optional[torch.LongTensor] = None,
1082
- past_key_value: Optional[Tuple[torch.Tensor]] = None,
1083
- output_attentions: Optional[bool] = False,
1084
- output_router_logits: Optional[bool] = False,
1085
- use_cache: Optional[bool] = False,
1086
- **kwargs,
1087
- ) -> Tuple[torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]]:
1088
- if "padding_mask" in kwargs:
1089
- warnings.warn(
1090
- "Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
1091
- )
1092
- """
1093
- Args:
1094
- hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
1095
- attention_mask (`torch.FloatTensor`, *optional*): attention mask of size
1096
- `(batch, sequence_length)` where padding elements are indicated by 0.
1097
- past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
1098
- output_attentions (`bool`, *optional*):
1099
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under
1100
- returned tensors for more detail.
1101
- output_router_logits (`bool`, *optional*):
1102
- Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
1103
- should not be returned during inference.
1104
- use_cache (`bool`, *optional*):
1105
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
1106
- (see `past_key_values`).
1107
- """
1108
-
1109
- residual = hidden_states
1110
-
1111
- hidden_states = self.input_layernorm(hidden_states)
1112
-
1113
- # Self Attention
1114
- hidden_states, self_attn_weights, present_key_value = self.self_attn(
1115
- hidden_states=hidden_states,
1116
- attention_mask=attention_mask,
1117
- position_ids=position_ids,
1118
- past_key_value=past_key_value,
1119
- output_attentions=output_attentions,
1120
- use_cache=use_cache,
1121
- )
1122
- hidden_states = residual + hidden_states
1123
-
1124
- # Fully Connected
1125
- residual = hidden_states
1126
- hidden_states = self.post_attention_layernorm(hidden_states)
1127
- hidden_states, router_logits = self.block_sparse_moe(hidden_states)
1128
- hidden_states = residual + hidden_states
1129
-
1130
- outputs = (hidden_states,)
1131
-
1132
- if output_attentions:
1133
- outputs += (self_attn_weights,)
1134
-
1135
- if use_cache:
1136
- outputs += (present_key_value,)
1137
-
1138
- if output_router_logits:
1139
- outputs += (router_logits,)
1140
-
1141
- return outputs
1142
-
1143
-
1144
- PHIMOE_START_DOCSTRING = r"""
1145
- This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
1146
- library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
1147
- etc.)
1148
-
1149
- This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
1150
- Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
1151
- and behavior.
1152
-
1153
- Parameters:
1154
- config ([`PhiMoEConfig`]):
1155
- Model configuration class with all the parameters of the model. Initializing with a config file does not
1156
- load the weights associated with the model, only the configuration. Check out the
1157
- [`~PreTrainedModel.from_pretrained`] method to load the model weights.
1158
- """
1159
-
1160
-
1161
- @add_start_docstrings(
1162
- "The bare PhiMoE Model outputting raw hidden-states without any specific head on top.",
1163
- PHIMOE_START_DOCSTRING,
1164
- )
1165
-
1166
- class PhiMoEPreTrainedModel(PreTrainedModel):
1167
- config_class = PhiMoEConfig
1168
- base_model_prefix = "model"
1169
- supports_gradient_checkpointing = True
1170
- _no_split_modules = ["PhiMoEDecoderLayer"]
1171
- _skip_keys_device_placement = "past_key_values"
1172
- _supports_flash_attn_2 = True
1173
- _supports_sdpa = True
1174
- _supports_cache_class = True
1175
-
1176
- def _init_weights(self, module):
1177
- pass
1178
- # std = self.config.initializer_range
1179
- # if isinstance(module, nn.Linear):
1180
- # module.weight.data.normal_(mean=0.0, std=std)
1181
- # if module.bias is not None:
1182
- # module.bias.data.zero_()
1183
- # elif isinstance(module, nn.Embedding):
1184
- # module.weight.data.normal_(mean=0.0, std=std)
1185
- # if module.padding_idx is not None:
1186
- # module.weight.data[module.padding_idx].zero_()
1187
-
1188
-
1189
- PHIMOE_INPUTS_DOCSTRING = r"""
1190
- Args:
1191
- input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`):
1192
- Indices of input sequence tokens in the vocabulary. Padding will be ignored by default should you provide
1193
- it.
1194
-
1195
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1196
- [`PreTrainedTokenizer.__call__`] for details.
1197
-
1198
- [What are input IDs?](../glossary#input-ids)
1199
- attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
1200
- Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
1201
-
1202
- - 1 for tokens that are **not masked**,
1203
- - 0 for tokens that are **masked**.
1204
-
1205
- [What are attention masks?](../glossary#attention-mask)
1206
-
1207
- Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
1208
- [`PreTrainedTokenizer.__call__`] for details.
1209
-
1210
- If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see
1211
- `past_key_values`).
1212
-
1213
- If you want to change padding behavior, you should read [`modeling_opt._prepare_decoder_attention_mask`]
1214
- and modify to your needs. See diagram 1 in [the paper](https://arxiv.org/abs/1910.13461) for more
1215
- information on the default strategy.
1216
-
1217
- - 1 indicates the head is **not masked**,
1218
- - 0 indicates the head is **masked**.
1219
- position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1220
- Indices of positions of each input sequence tokens in the position embeddings. Selected in the range `[0,
1221
- config.n_positions - 1]`.
1222
-
1223
- [What are position IDs?](../glossary#position-ids)
1224
- past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
1225
- Tuple of `tuple(torch.FloatTensor)` of length `config.n_layers`, with each tuple having 2 tensors of shape
1226
- `(batch_size, num_heads, sequence_length, embed_size_per_head)`) and 2 additional tensors of shape
1227
- `(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)`.
1228
-
1229
- Contains pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention
1230
- blocks) that can be used (see `past_key_values` input) to speed up sequential decoding.
1231
-
1232
- If `past_key_values` are used, the user can optionally input only the last `decoder_input_ids` (those that
1233
- don't have their past key value states given to this model) of shape `(batch_size, 1)` instead of all
1234
- `decoder_input_ids` of shape `(batch_size, sequence_length)`.
1235
- inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
1236
- Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
1237
- is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
1238
- model's internal embedding lookup matrix.
1239
- use_cache (`bool`, *optional*):
1240
- If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding (see
1241
- `past_key_values`).
1242
- output_attentions (`bool`, *optional*):
1243
- Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned
1244
- tensors for more detail.
1245
- output_hidden_states (`bool`, *optional*):
1246
- Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
1247
- more detail.
1248
- output_router_logits (`bool`, *optional*):
1249
- Whether or not to return the logits of all the routers. They are useful for computing the router loss, and
1250
- should not be returned during inference.
1251
- return_dict (`bool`, *optional*):
1252
- Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
1253
- """
1254
-
1255
-
1256
- @add_start_docstrings(
1257
- "The bare PhiMoE Model outputting raw hidden-states without any specific head on top.",
1258
- PHIMOE_START_DOCSTRING,
1259
- )
1260
-
1261
- class PhiMoEModel(PhiMoEPreTrainedModel):
1262
- """
1263
- Transformer decoder consisting of *config.num_hidden_layers* layers. Each layer is a [`PhiMoEDecoderLayer`]
1264
-
1265
- Args:
1266
- config: PhiMoEConfig
1267
- """
1268
-
1269
- def __init__(self, config: PhiMoEConfig):
1270
- super().__init__(config)
1271
- self.padding_idx = config.pad_token_id
1272
- self.vocab_size = config.vocab_size
1273
-
1274
- self.embed_tokens = nn.Embedding(config.vocab_size, config.hidden_size, self.padding_idx)
1275
- self.layers = nn.ModuleList(
1276
- [PhiMoEDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)]
1277
- )
1278
- self._attn_implementation = config._attn_implementation
1279
- self.norm = nn.LayerNorm(config.hidden_size, eps=config.rms_norm_eps, elementwise_affine=True)
1280
-
1281
- self.gradient_checkpointing = False
1282
- # Initialize weights and apply final processing
1283
- self.post_init()
1284
-
1285
- def get_input_embeddings(self):
1286
- return self.embed_tokens
1287
-
1288
- def set_input_embeddings(self, value):
1289
- self.embed_tokens = value
1290
-
1291
- # Ignore copy
1292
- @add_start_docstrings_to_model_forward(PHIMOE_INPUTS_DOCSTRING)
1293
- def forward(
1294
- self,
1295
- input_ids: torch.LongTensor = None,
1296
- attention_mask: Optional[torch.Tensor] = None,
1297
- position_ids: Optional[torch.LongTensor] = None,
1298
- past_key_values: Optional[List[torch.FloatTensor]] = None,
1299
- inputs_embeds: Optional[torch.FloatTensor] = None,
1300
- use_cache: Optional[bool] = None,
1301
- output_attentions: Optional[bool] = None,
1302
- output_hidden_states: Optional[bool] = None,
1303
- output_router_logits: Optional[bool] = None,
1304
- return_dict: Optional[bool] = None,
1305
- ) -> Union[Tuple, MoeModelOutputWithPast]:
1306
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1307
- output_router_logits = (
1308
- output_router_logits if output_router_logits is not None else self.config.output_router_logits
1309
- )
1310
- output_hidden_states = (
1311
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1312
- )
1313
- use_cache = use_cache if use_cache is not None else self.config.use_cache
1314
-
1315
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1316
-
1317
- # retrieve input_ids and inputs_embeds
1318
- if input_ids is not None and inputs_embeds is not None:
1319
- raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
1320
- elif input_ids is not None:
1321
- batch_size, seq_length = input_ids.shape
1322
- elif inputs_embeds is not None:
1323
- batch_size, seq_length, _ = inputs_embeds.shape
1324
- else:
1325
- raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
1326
-
1327
- past_key_values_length = 0
1328
-
1329
- if self.gradient_checkpointing and self.training:
1330
- if use_cache:
1331
- logger.warning_once(
1332
- "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`transformers."
1333
- )
1334
- use_cache = False
1335
-
1336
- if use_cache:
1337
- use_legacy_cache = not isinstance(past_key_values, Cache)
1338
- if use_legacy_cache:
1339
- past_key_values = DynamicCache.from_legacy_cache(past_key_values)
1340
- past_key_values_length = past_key_values.get_usable_length(seq_length)
1341
-
1342
- if position_ids is None:
1343
- device = input_ids.device if input_ids is not None else inputs_embeds.device
1344
- position_ids = torch.arange(
1345
- past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
1346
- )
1347
- position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
1348
- else:
1349
- position_ids = position_ids.view(-1, seq_length).long()
1350
-
1351
- if inputs_embeds is None:
1352
- inputs_embeds = self.embed_tokens(input_ids)
1353
-
1354
- if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
1355
- is_padding_right = attention_mask[:, -1].sum().item() != batch_size
1356
- if is_padding_right:
1357
- raise ValueError(
1358
- "You are attempting to perform batched generation with padding_side='right'"
1359
- " this may lead to unexpected behaviour for Flash Attention version of PhiMoE. Make sure to "
1360
- " call `tokenizer.padding_side = 'left'` before tokenizing the input. "
1361
- )
1362
-
1363
- if self._attn_implementation == "flash_attention_2":
1364
- # 2d mask is passed through the layers
1365
- attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
1366
- elif self._attn_implementation == "sdpa" and not output_attentions:
1367
- # output_attentions=True can not be supported when using SDPA, and we fall back on
1368
- # the manual implementation that requires a 4D causal mask in all cases.
1369
- attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
1370
- attention_mask,
1371
- (batch_size, seq_length),
1372
- inputs_embeds,
1373
- past_key_values_length,
1374
- )
1375
- else:
1376
- # 4d mask is passed through the layers
1377
- attention_mask = _prepare_4d_causal_attention_mask(
1378
- attention_mask,
1379
- (batch_size, seq_length),
1380
- inputs_embeds,
1381
- past_key_values_length,
1382
- sliding_window=self.config.sliding_window,
1383
- )
1384
-
1385
- hidden_states = inputs_embeds
1386
-
1387
- # decoder layers
1388
- all_hidden_states = () if output_hidden_states else None
1389
- all_self_attns = () if output_attentions else None
1390
- all_router_logits = () if output_router_logits else None
1391
- next_decoder_cache = None
1392
-
1393
- for decoder_layer in self.layers:
1394
- if output_hidden_states:
1395
- all_hidden_states += (hidden_states,)
1396
-
1397
- if self.gradient_checkpointing and self.training:
1398
- layer_outputs = self._gradient_checkpointing_func(
1399
- decoder_layer.__call__,
1400
- hidden_states,
1401
- attention_mask,
1402
- position_ids,
1403
- past_key_values,
1404
- output_attentions,
1405
- output_router_logits,
1406
- use_cache,
1407
- )
1408
- else:
1409
- layer_outputs = decoder_layer(
1410
- hidden_states,
1411
- attention_mask=attention_mask,
1412
- position_ids=position_ids,
1413
- past_key_value=past_key_values,
1414
- output_attentions=output_attentions,
1415
- output_router_logits=output_router_logits,
1416
- use_cache=use_cache,
1417
- )
1418
-
1419
- hidden_states = layer_outputs[0]
1420
-
1421
- if use_cache:
1422
- next_decoder_cache = layer_outputs[2 if output_attentions else 1]
1423
-
1424
- if output_attentions:
1425
- all_self_attns += (layer_outputs[1],)
1426
-
1427
- if output_router_logits:
1428
- all_router_logits += (layer_outputs[-1],)
1429
-
1430
- hidden_states = self.norm(hidden_states)
1431
-
1432
- # add hidden states from the last decoder layer
1433
- if output_hidden_states:
1434
- all_hidden_states += (hidden_states,)
1435
-
1436
- next_cache = None
1437
- if use_cache:
1438
- next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
1439
-
1440
- if not return_dict:
1441
- return tuple(
1442
- v
1443
- for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]
1444
- if v is not None
1445
- )
1446
- return MoeModelOutputWithPast(
1447
- last_hidden_state=hidden_states,
1448
- past_key_values=next_cache,
1449
- hidden_states=all_hidden_states,
1450
- attentions=all_self_attns,
1451
- router_logits=all_router_logits,
1452
- )
1453
-
1454
-
1455
- class PhiMoEForCausalLM(PhiMoEPreTrainedModel):
1456
- _tied_weights_keys = ["lm_head.weight"]
1457
-
1458
- def __init__(self, config):
1459
- super().__init__(config)
1460
- self.model = PhiMoEModel(config)
1461
- self.vocab_size = config.vocab_size
1462
- self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=self.config.lm_head_bias)
1463
- self.router_aux_loss_coef = config.router_aux_loss_coef
1464
- self.num_experts = config.num_local_experts
1465
- self.num_experts_per_tok = config.num_experts_per_tok
1466
- # Initialize weights and apply final processing
1467
- self.post_init()
1468
-
1469
- def get_input_embeddings(self):
1470
- return self.model.embed_tokens
1471
-
1472
- def set_input_embeddings(self, value):
1473
- self.model.embed_tokens = value
1474
-
1475
- def get_output_embeddings(self):
1476
- return self.lm_head
1477
-
1478
- def set_output_embeddings(self, new_embeddings):
1479
- self.lm_head = new_embeddings
1480
-
1481
- def set_decoder(self, decoder):
1482
- self.model = decoder
1483
-
1484
- def get_decoder(self):
1485
- return self.model
1486
-
1487
- @add_start_docstrings_to_model_forward(PHIMOE_INPUTS_DOCSTRING)
1488
- @replace_return_docstrings(output_type=MoeCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
1489
- # Ignore copy
1490
- def forward(
1491
- self,
1492
- input_ids: torch.LongTensor = None,
1493
- attention_mask: Optional[torch.Tensor] = None,
1494
- position_ids: Optional[torch.LongTensor] = None,
1495
- past_key_values: Optional[List[torch.FloatTensor]] = None,
1496
- inputs_embeds: Optional[torch.FloatTensor] = None,
1497
- labels: Optional[torch.LongTensor] = None,
1498
- use_cache: Optional[bool] = None,
1499
- output_attentions: Optional[bool] = None,
1500
- output_hidden_states: Optional[bool] = None,
1501
- output_router_logits: Optional[bool] = None,
1502
- return_dict: Optional[bool] = None,
1503
- ) -> Union[Tuple, MoeCausalLMOutputWithPast]:
1504
- r"""
1505
- Args:
1506
- labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
1507
- Labels for computing the masked language modeling loss. Indices should either be in `[0, transformers.,
1508
- config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
1509
- (masked), the loss is only computed for the tokens with labels in `[0, transformers., config.vocab_size]`.
1510
-
1511
- Returns:
1512
-
1513
- Example:
1514
-
1515
- ```python
1516
- >>> from transformers import AutoTokenizer, PhiMoEForCausalLM
1517
-
1518
- >>> model = PhiMoEForCausalLM.from_pretrained("microsoft/Phi-3.5-moe-instruct")
1519
- >>> tokenizer = AutoTokenizer.from_pretrained("microsoft/Phi-3.5-moe-instruct")
1520
-
1521
- >>> prompt = "Hey, are you conscious? Can you talk to me?"
1522
- >>> inputs = tokenizer(prompt, return_tensors="pt")
1523
-
1524
- >>> # Generate
1525
- >>> generate_ids = model.generate(inputs.input_ids, max_length=30)
1526
- >>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
1527
- "Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
1528
- ```"""
1529
-
1530
- output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
1531
- output_router_logits = (
1532
- output_router_logits if output_router_logits is not None else self.config.output_router_logits
1533
- )
1534
-
1535
- output_hidden_states = (
1536
- output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
1537
- )
1538
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1539
-
1540
- # decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
1541
- outputs = self.model(
1542
- input_ids=input_ids,
1543
- attention_mask=attention_mask,
1544
- position_ids=position_ids,
1545
- past_key_values=past_key_values,
1546
- inputs_embeds=inputs_embeds,
1547
- use_cache=use_cache,
1548
- output_attentions=output_attentions,
1549
- output_hidden_states=output_hidden_states,
1550
- output_router_logits=output_router_logits,
1551
- return_dict=return_dict,
1552
- )
1553
-
1554
- hidden_states = outputs[0]
1555
- logits = self.lm_head(hidden_states)
1556
- logits = logits.float()
1557
-
1558
- loss = None
1559
- if labels is not None:
1560
- # Shift so that tokens < n predict n
1561
- shift_logits = logits[..., :-1, :].contiguous()
1562
- shift_labels = labels[..., 1:].contiguous()
1563
- # Flatten the tokens
1564
- loss_fct = CrossEntropyLoss()
1565
- shift_logits = shift_logits.view(-1, self.config.vocab_size)
1566
- shift_labels = shift_labels.view(-1)
1567
- # Enable model parallelism
1568
- shift_labels = shift_labels.to(shift_logits.device)
1569
- loss = loss_fct(shift_logits, shift_labels)
1570
-
1571
- aux_loss = None
1572
- if output_router_logits:
1573
- aux_loss = load_balancing_loss_func(
1574
- outputs.router_logits if return_dict else outputs[-1],
1575
- self.num_experts,
1576
- self.num_experts_per_tok,
1577
- attention_mask,
1578
- )
1579
- if labels is not None:
1580
- loss += self.router_aux_loss_coef * aux_loss.to(loss.device) # make sure to reside in the same device
1581
-
1582
- if not return_dict:
1583
- output = (logits,) + outputs[1:]
1584
- if output_router_logits:
1585
- output = (aux_loss,) + output
1586
- return (loss,) + output if loss is not None else output
1587
-
1588
- return MoeCausalLMOutputWithPast(
1589
- loss=loss,
1590
- aux_loss=aux_loss,
1591
- logits=logits,
1592
- past_key_values=outputs.past_key_values,
1593
- hidden_states=outputs.hidden_states,
1594
- attentions=outputs.attentions,
1595
- router_logits=outputs.router_logits,
1596
- )
1597
-
1598
- def prepare_inputs_for_generation(
1599
- self,
1600
- input_ids,
1601
- past_key_values=None,
1602
- attention_mask=None,
1603
- inputs_embeds=None,
1604
- output_router_logits=False,
1605
- **kwargs,
1606
- ):
1607
- # When the first time input length reached long and short factor switching point, enforce re-compute cache
1608
- # It will cause downside of slower at this single token position, however, better than current failure.
1609
- if past_key_values and self.config.rope_scaling and input_ids.shape[1] >= self.config.original_max_position_embeddings + 1:
1610
- past_length = past_key_values.seen_tokens if isinstance(past_key_values, Cache) else past_key_values[0][0].shape[2]
1611
- if past_length <= self.config.original_max_position_embeddings:
1612
- past_key_values = None
1613
-
1614
- # Omit tokens covered by past_key_values
1615
- if past_key_values is not None:
1616
- if isinstance(past_key_values, Cache):
1617
- cache_length = past_key_values.get_seq_length()
1618
- past_length = past_key_values.seen_tokens
1619
- max_cache_length = past_key_values.get_max_length()
1620
- else:
1621
- cache_length = past_length = past_key_values[0][0].shape[2]
1622
- max_cache_length = None
1623
-
1624
- # Keep only the unprocessed tokens:
1625
- # 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
1626
- # some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
1627
- # input)
1628
- if attention_mask is not None and attention_mask.shape[1] > input_ids.shape[1]:
1629
- input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
1630
- # 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
1631
- # input_ids based on the past_length.
1632
- elif past_length < input_ids.shape[1]:
1633
- input_ids = input_ids[:, past_length:]
1634
- # 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
1635
-
1636
- # If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
1637
- if (
1638
- max_cache_length is not None
1639
- and attention_mask is not None
1640
- and cache_length + input_ids.shape[1] > max_cache_length
1641
- ):
1642
- attention_mask = attention_mask[:, -max_cache_length:]
1643
-
1644
- position_ids = kwargs.get("position_ids", None)
1645
- if attention_mask is not None and position_ids is None:
1646
- # create position_ids on the fly for batch generation
1647
- position_ids = attention_mask.long().cumsum(-1) - 1
1648
- position_ids.masked_fill_(attention_mask == 0, 1)
1649
- if past_key_values:
1650
- position_ids = position_ids[:, -input_ids.shape[1] :]
1651
-
1652
- # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
1653
- if inputs_embeds is not None and past_key_values is None:
1654
- model_inputs = {"inputs_embeds": inputs_embeds}
1655
- else:
1656
- model_inputs = {"input_ids": input_ids}
1657
-
1658
- model_inputs.update(
1659
- {
1660
- "position_ids": position_ids,
1661
- "past_key_values": past_key_values,
1662
- "use_cache": kwargs.get("use_cache"),
1663
- "attention_mask": attention_mask,
1664
- "output_router_logits": output_router_logits,
1665
- }
1666
- )
1667
- return model_inputs
1668
-
1669
- @staticmethod
1670
- def _reorder_cache(past_key_values, beam_idx):
1671
- reordered_past = ()
1672
- for layer_past in past_key_values:
1673
- reordered_past += (
1674
- tuple(past_state.index_select(0, beam_idx.to(past_state.device)) for past_state in layer_past),
1675
- )
1676
- return reordered_past
1677
-
1678
-
1679
- @add_start_docstrings(
1680
- """
1681
- The PhiMoE Model transformer with a sequence classification head on top (linear layer).
1682
-
1683
- [`PhiMoEForSequenceClassification`] uses the last token in order to do the classification, as other causal models
1684
- (e.g. GPT-2) do.
1685
-
1686
- Since it does classification on the last token, it requires to know the position of the last token. If a
1687
- `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If
1688
- no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
1689
- padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in
1690
- each row of the batch).
1691
- """,
1692
- PHIMOE_START_DOCSTRING,
1693
- )
1694
- # Copied from transformers.models.llama.modeling_llama.LlamaForSequenceClassification with Llama->PhiMoE, LLAMA->PHIMOE
1695
- class PhiMoEForSequenceClassification(PhiMoEPreTrainedModel):
1696
- def __init__(self, config):
1697
- super().__init__(config)
1698
- self.num_labels = config.num_labels
1699
- self.model = PhiMoEModel(config)
1700
- self.score = nn.Linear(config.hidden_size, self.num_labels, bias=False)
1701
-
1702
- # Initialize weights and apply final processing
1703
- self.post_init()
1704
-
1705
- def get_input_embeddings(self):
1706
- return self.model.embed_tokens
1707
-
1708
- def set_input_embeddings(self, value):
1709
- self.model.embed_tokens = value
1710
-
1711
- @add_start_docstrings_to_model_forward(PHIMOE_INPUTS_DOCSTRING)
1712
- def forward(
1713
- self,
1714
- input_ids: torch.LongTensor = None,
1715
- attention_mask: Optional[torch.Tensor] = None,
1716
- position_ids: Optional[torch.LongTensor] = None,
1717
- past_key_values: Optional[List[torch.FloatTensor]] = None,
1718
- inputs_embeds: Optional[torch.FloatTensor] = None,
1719
- labels: Optional[torch.LongTensor] = None,
1720
- use_cache: Optional[bool] = None,
1721
- output_attentions: Optional[bool] = None,
1722
- output_hidden_states: Optional[bool] = None,
1723
- return_dict: Optional[bool] = None,
1724
- ) -> Union[Tuple, SequenceClassifierOutputWithPast]:
1725
- r"""
1726
- labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
1727
- Labels for computing the sequence classification/regression loss. Indices should be in `[0, transformers.,
1728
- config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
1729
- `config.num_labels > 1` a classification loss is computed (Cross-Entropy).
1730
- """
1731
- return_dict = return_dict if return_dict is not None else self.config.use_return_dict
1732
-
1733
- transformer_outputs = self.model(
1734
- input_ids,
1735
- attention_mask=attention_mask,
1736
- position_ids=position_ids,
1737
- past_key_values=past_key_values,
1738
- inputs_embeds=inputs_embeds,
1739
- use_cache=use_cache,
1740
- output_attentions=output_attentions,
1741
- output_hidden_states=output_hidden_states,
1742
- return_dict=return_dict,
1743
- )
1744
- hidden_states = transformer_outputs[0]
1745
- logits = self.score(hidden_states)
1746
-
1747
- if input_ids is not None:
1748
- batch_size = input_ids.shape[0]
1749
- else:
1750
- batch_size = inputs_embeds.shape[0]
1751
-
1752
- if self.config.pad_token_id is None and batch_size != 1:
1753
- raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.")
1754
- if self.config.pad_token_id is None:
1755
- sequence_lengths = -1
1756
- else:
1757
- if input_ids is not None:
1758
- # if no pad token found, use modulo instead of reverse indexing for ONNX compatibility
1759
- sequence_lengths = torch.eq(input_ids, self.config.pad_token_id).int().argmax(-1) - 1
1760
- sequence_lengths = sequence_lengths % input_ids.shape[-1]
1761
- sequence_lengths = sequence_lengths.to(logits.device)
1762
- else:
1763
- sequence_lengths = -1
1764
-
1765
- pooled_logits = logits[torch.arange(batch_size, device=logits.device), sequence_lengths]
1766
-
1767
- loss = None
1768
- if labels is not None:
1769
- labels = labels.to(logits.device)
1770
- if self.config.problem_type is None:
1771
- if self.num_labels == 1:
1772
- self.config.problem_type = "regression"
1773
- elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int):
1774
- self.config.problem_type = "single_label_classification"
1775
- else:
1776
- self.config.problem_type = "multi_label_classification"
1777
-
1778
- if self.config.problem_type == "regression":
1779
- loss_fct = MSELoss()
1780
- if self.num_labels == 1:
1781
- loss = loss_fct(pooled_logits.squeeze(), labels.squeeze())
1782
- else:
1783
- loss = loss_fct(pooled_logits, labels)
1784
- elif self.config.problem_type == "single_label_classification":
1785
- loss_fct = CrossEntropyLoss()
1786
- loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1))
1787
- elif self.config.problem_type == "multi_label_classification":
1788
- loss_fct = BCEWithLogitsLoss()
1789
- loss = loss_fct(pooled_logits, labels)
1790
- if not return_dict:
1791
- output = (pooled_logits,) + transformer_outputs[1:]
1792
- return ((loss,) + output) if loss is not None else output
1793
-
1794
- return SequenceClassifierOutputWithPast(
1795
- loss=loss,
1796
- logits=pooled_logits,
1797
- past_key_values=transformer_outputs.past_key_values,
1798
- hidden_states=transformer_outputs.hidden_states,
1799
- attentions=transformer_outputs.attentions,
1800
- )
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
sample_finetune.py DELETED
@@ -1,224 +0,0 @@
1
- import sys
2
- import logging
3
-
4
- import deepspeed
5
- import datasets
6
- from datasets import load_dataset
7
- from peft import LoraConfig
8
- import torch
9
- import transformers
10
- from trl import SFTTrainer
11
- from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments
12
-
13
- """
14
- A simple example on using SFTTrainer and Accelerate to finetune Phi-3 models. For
15
- a more advanced example, please follow HF alignment-handbook/scripts/run_sft.py.
16
- This example has utilized DeepSpeed ZeRO3 offload to reduce the memory usage. The
17
- script can be run on A100 or later generation GPUs. Here are some suggestions on
18
- futher reducing memory consumption:
19
- - reduce batch size
20
- - decrease lora dimension
21
- - restrict lora target modules
22
- Please follow these steps to run the script:
23
- 1. Install dependencies:
24
- conda install -c conda-forge accelerate
25
- pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu121
26
- pip3 install -i https://pypi.org/simple/ bitsandbytes
27
- pip3 install peft trl transformers datasets
28
- pip3 install deepspeed
29
- 2. Setup accelerate and deepspeed config based on the machine used:
30
- accelerate config
31
- Here is a sample config for deepspeed zero3:
32
- compute_environment: LOCAL_MACHINE
33
- debug: false
34
- deepspeed_config:
35
- gradient_accumulation_steps: 1
36
- offload_optimizer_device: none
37
- offload_param_device: none
38
- zero3_init_flag: true
39
- zero3_save_16bit_model: true
40
- zero_stage: 3
41
- distributed_type: DEEPSPEED
42
- downcast_bf16: 'no'
43
- enable_cpu_affinity: false
44
- machine_rank: 0
45
- main_training_function: main
46
- mixed_precision: bf16
47
- num_machines: 1
48
- num_processes: 2
49
- rdzv_backend: static
50
- same_network: true
51
- tpu_env: []
52
- tpu_use_cluster: false
53
- tpu_use_sudo: false
54
- use_cpu: false
55
- 3. check accelerate config:
56
- accelerate env
57
- 4. Run the code, and make sure to use accelerate launch alongside with
58
- at least 2 A100 80GB GPUs:
59
-
60
- accelerate launch sample_finetune.py
61
- """
62
-
63
- logger = logging.getLogger(__name__)
64
-
65
-
66
- ###################
67
- # Hyper-parameters
68
- ###################
69
- training_config = {
70
- "bf16": True,
71
- "do_eval": False,
72
- "learning_rate": 5.0e-06,
73
- "log_level": "info",
74
- "logging_steps": 20,
75
- "logging_strategy": "steps",
76
- "lr_scheduler_type": "cosine",
77
- "num_train_epochs": 1,
78
- "max_steps": -1,
79
- "output_dir": "./checkpoint_dir",
80
- "overwrite_output_dir": True,
81
- "per_device_eval_batch_size": 4,
82
- "per_device_train_batch_size": 4,
83
- "remove_unused_columns": True,
84
- "save_steps": 100,
85
- "save_total_limit": 1,
86
- "seed": 0,
87
- "gradient_checkpointing": True,
88
- "gradient_checkpointing_kwargs":{"use_reentrant": False},
89
- "gradient_accumulation_steps": 1,
90
- "warmup_ratio": 0.2,
91
- }
92
-
93
- peft_config = {
94
- "r": 16,
95
- "lora_alpha": 32,
96
- "lora_dropout": 0.05,
97
- "bias": "none",
98
- "task_type": "CAUSAL_LM",
99
- "target_modules": "all-linear",
100
- "modules_to_save": None,
101
- }
102
- train_conf = TrainingArguments(**training_config)
103
- peft_conf = LoraConfig(**peft_config)
104
-
105
-
106
- ###############
107
- # Setup logging
108
- ###############
109
- logging.basicConfig(
110
- format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
111
- datefmt="%Y-%m-%d %H:%M:%S",
112
- handlers=[logging.StreamHandler(sys.stdout)],
113
- )
114
- log_level = train_conf.get_process_log_level()
115
- logger.setLevel(log_level)
116
- datasets.utils.logging.set_verbosity(log_level)
117
- transformers.utils.logging.set_verbosity(log_level)
118
- transformers.utils.logging.enable_default_handler()
119
- transformers.utils.logging.enable_explicit_format()
120
-
121
- # Log on each process a small summary
122
- logger.warning(
123
- f"Process rank: {train_conf.local_rank}, device: {train_conf.device}, n_gpu: {train_conf.n_gpu}"
124
- + f" distributed training: {bool(train_conf.local_rank != -1)}, 16-bits training: {train_conf.fp16}"
125
- )
126
- logger.info(f"Training/evaluation parameters {train_conf}")
127
- logger.info(f"PEFT parameters {peft_conf}")
128
-
129
-
130
- ################
131
- # Model Loading
132
- ################
133
- checkpoint_path = "microsoft/Phi-3.5-MoE-instruct"
134
- model_kwargs = dict(
135
- use_cache=False,
136
- trust_remote_code=True,
137
- attn_implementation="flash_attention_2", # loading the model with flash-attenstion support
138
- torch_dtype=torch.bfloat16,
139
- device_map=None
140
- )
141
- model = AutoModelForCausalLM.from_pretrained(checkpoint_path, **model_kwargs)
142
- tokenizer = AutoTokenizer.from_pretrained(checkpoint_path)
143
- tokenizer.model_max_length = 2048
144
- tokenizer.pad_token = tokenizer.unk_token # use unk rather than eos token to prevent endless generation
145
- tokenizer.pad_token_id = tokenizer.convert_tokens_to_ids(tokenizer.pad_token)
146
- tokenizer.padding_side = 'right'
147
-
148
- for m in model.modules():
149
- # https://github.com/microsoft/DeepSpeed/pull/4966
150
- if "PhiMoESparseMoeBlock" in m.__class__.__name__:
151
- deepspeed.utils.set_z3_leaf_modules(model, [m.__class__])
152
- logger.info(f"Setting zero3 leaf for model on class with name: {m.__class__.__name__}")
153
- break
154
-
155
-
156
- ##################
157
- # Data Processing
158
- ##################
159
- def apply_chat_template(
160
- example,
161
- tokenizer,
162
- ):
163
- messages = example["messages"]
164
- example["text"] = tokenizer.apply_chat_template(
165
- messages, tokenize=False, add_generation_prompt=False)
166
- return example
167
-
168
- raw_dataset = load_dataset("HuggingFaceH4/ultrachat_200k")
169
- train_dataset = raw_dataset["train_sft"]
170
- test_dataset = raw_dataset["test_sft"]
171
- column_names = list(train_dataset.features)
172
-
173
- processed_train_dataset = train_dataset.map(
174
- apply_chat_template,
175
- fn_kwargs={"tokenizer": tokenizer},
176
- num_proc=10,
177
- remove_columns=column_names,
178
- desc="Applying chat template to train_sft",
179
- )
180
-
181
- processed_test_dataset = test_dataset.map(
182
- apply_chat_template,
183
- fn_kwargs={"tokenizer": tokenizer},
184
- num_proc=10,
185
- remove_columns=column_names,
186
- desc="Applying chat template to test_sft",
187
- )
188
-
189
-
190
- ###########
191
- # Training
192
- ###########
193
- trainer = SFTTrainer(
194
- model=model,
195
- args=train_conf,
196
- peft_config=peft_conf,
197
- train_dataset=processed_train_dataset,
198
- eval_dataset=processed_test_dataset,
199
- max_seq_length=2048,
200
- dataset_text_field="text",
201
- tokenizer=tokenizer,
202
- packing=True
203
- )
204
- train_result = trainer.train()
205
- metrics = train_result.metrics
206
- trainer.log_metrics("train", metrics)
207
- trainer.save_metrics("train", metrics)
208
- trainer.save_state()
209
-
210
-
211
- #############
212
- # Evaluation
213
- #############
214
- tokenizer.padding_side = 'left'
215
- metrics = trainer.evaluate()
216
- metrics["eval_samples"] = len(processed_test_dataset)
217
- trainer.log_metrics("eval", metrics)
218
- trainer.save_metrics("eval", metrics)
219
-
220
-
221
- # ############
222
- # # Save model
223
- # ############
224
- trainer.save_model(train_conf.output_dir)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
special_tokens_map.json DELETED
@@ -1,30 +0,0 @@
1
- {
2
- "bos_token": {
3
- "content": "<s>",
4
- "lstrip": false,
5
- "normalized": false,
6
- "rstrip": false,
7
- "single_word": false
8
- },
9
- "eos_token": {
10
- "content": "<|endoftext|>",
11
- "lstrip": false,
12
- "normalized": false,
13
- "rstrip": false,
14
- "single_word": false
15
- },
16
- "pad_token": {
17
- "content": "<|endoftext|>",
18
- "lstrip": false,
19
- "normalized": false,
20
- "rstrip": false,
21
- "single_word": false
22
- },
23
- "unk_token": {
24
- "content": "<unk>",
25
- "lstrip": false,
26
- "normalized": false,
27
- "rstrip": false,
28
- "single_word": false
29
- }
30
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
tokenizer.json DELETED
The diff for this file is too large to render. See raw diff
 
tokenizer.model DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
- size 499723
 
 
 
 
tokenizer_config.json DELETED
@@ -1,131 +0,0 @@
1
- {
2
- "add_bos_token": false,
3
- "add_eos_token": false,
4
- "add_prefix_space": null,
5
- "added_tokens_decoder": {
6
- "0": {
7
- "content": "<unk>",
8
- "lstrip": false,
9
- "normalized": false,
10
- "rstrip": false,
11
- "single_word": false,
12
- "special": true
13
- },
14
- "1": {
15
- "content": "<s>",
16
- "lstrip": false,
17
- "normalized": false,
18
- "rstrip": false,
19
- "single_word": false,
20
- "special": true
21
- },
22
- "2": {
23
- "content": "</s>",
24
- "lstrip": false,
25
- "normalized": false,
26
- "rstrip": true,
27
- "single_word": false,
28
- "special": false
29
- },
30
- "32000": {
31
- "content": "<|endoftext|>",
32
- "lstrip": false,
33
- "normalized": false,
34
- "rstrip": false,
35
- "single_word": false,
36
- "special": true
37
- },
38
- "32001": {
39
- "content": "<|assistant|>",
40
- "lstrip": false,
41
- "normalized": false,
42
- "rstrip": true,
43
- "single_word": false,
44
- "special": true
45
- },
46
- "32002": {
47
- "content": "<|placeholder1|>",
48
- "lstrip": false,
49
- "normalized": false,
50
- "rstrip": true,
51
- "single_word": false,
52
- "special": true
53
- },
54
- "32003": {
55
- "content": "<|placeholder2|>",
56
- "lstrip": false,
57
- "normalized": false,
58
- "rstrip": true,
59
- "single_word": false,
60
- "special": true
61
- },
62
- "32004": {
63
- "content": "<|placeholder3|>",
64
- "lstrip": false,
65
- "normalized": false,
66
- "rstrip": true,
67
- "single_word": false,
68
- "special": true
69
- },
70
- "32005": {
71
- "content": "<|placeholder4|>",
72
- "lstrip": false,
73
- "normalized": false,
74
- "rstrip": true,
75
- "single_word": false,
76
- "special": true
77
- },
78
- "32006": {
79
- "content": "<|system|>",
80
- "lstrip": false,
81
- "normalized": false,
82
- "rstrip": true,
83
- "single_word": false,
84
- "special": true
85
- },
86
- "32007": {
87
- "content": "<|end|>",
88
- "lstrip": false,
89
- "normalized": false,
90
- "rstrip": true,
91
- "single_word": false,
92
- "special": true
93
- },
94
- "32008": {
95
- "content": "<|placeholder5|>",
96
- "lstrip": false,
97
- "normalized": false,
98
- "rstrip": true,
99
- "single_word": false,
100
- "special": true
101
- },
102
- "32009": {
103
- "content": "<|placeholder6|>",
104
- "lstrip": false,
105
- "normalized": false,
106
- "rstrip": true,
107
- "single_word": false,
108
- "special": true
109
- },
110
- "32010": {
111
- "content": "<|user|>",
112
- "lstrip": false,
113
- "normalized": false,
114
- "rstrip": true,
115
- "single_word": false,
116
- "special": true
117
- }
118
- },
119
- "bos_token": "<s>",
120
- "chat_template": "{% for message in messages %}{% if message['role'] == 'system' and message['content'] %}{{'<|system|>\n' + message['content'] + '<|end|>\n'}}{% elif message['role'] == 'user' %}{{'<|user|>\n' + message['content'] + '<|end|>\n'}}{% elif message['role'] == 'assistant' %}{{'<|assistant|>\n' + message['content'] + '<|end|>\n'}}{% endif %}{% endfor %}{% if add_generation_prompt %}{{ '<|assistant|>\n' }}{% else %}{{ eos_token }}{% endif %}",
121
- "clean_up_tokenization_spaces": false,
122
- "eos_token": "<|end|>",
123
- "legacy": false,
124
- "model_max_length": 131072,
125
- "pad_token": "<|end|>",
126
- "padding_side": "left",
127
- "sp_model_kwargs": {},
128
- "tokenizer_class": "LlamaTokenizer",
129
- "unk_token": "<unk>",
130
- "use_default_system_prompt": false
131
- }