MLX
English
mlx-llm
exbert

BERT base model (uncased) - MLX

Pretrained model on English language using a masked language modeling (MLM) objective. It was introduced in this paper and first released in this repository. This model is uncased: it does not make a difference between english and English.

Model description

Please, refer to the original model card for more details on bert-base-uncased.

Use it with mlx-llm

Install mlx-llm from GitHub.

git clone https://github.com/riccardomusmeci/mlx-llm
cd mlx-llm
pip install .

Run

from mlx_llm.model import create_model
from transformers import BertTokenizer
import mlx.core as mx

model = create_model("bert-base-uncased") # it will download weights from this repository
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")

batch = ["This is an example of BERT working on MLX."]
tokens = tokenizer(batch, return_tensors="np", padding=True)
tokens = {key: mx.array(v) for key, v in tokens.items()}

output, pooled = model(**tokens)
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Datasets used to train mlx-community/bert-base-uncased-mlx