metadata
language:
- en
license: apache-2.0
library_name: transformers
tags:
- gpt
- llm
- large language model
- h2o-llmstudio
- mlx
datasets:
- HuggingFaceH4/ultrafeedback_binarized
- Intel/orca_dpo_pairs
- argilla/distilabel-math-preference-dpo
- Open-Orca/OpenOrca
- OpenAssistant/oasst2
- HuggingFaceH4/ultrachat_200k
- meta-math/MetaMathQA
thumbnail: >-
https://h2o.ai/etc.clientlibs/h2o/clientlibs/clientlib-site/resources/images/favicon.ico
widget:
- text: <|prompt|>Why is drinking water so healthy?</s><|answer|>
mlx-community/h2o-danube-1.8b-chat-4bit-mlx
This model was converted to MLX format from h2oai/h2o-danube-1.8b-chat
.
Refer to the original model card for more details on the model.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/h2o-danube-1.8b-chat-4bit-mlx")
response = generate(model, tokenizer, prompt="hello", verbose=True)