metadata
base_model: karakuri-ai/karakuri-lm-8x7b-instruct-v0.1
datasets:
- databricks/databricks-dolly-15k
- glaiveai/glaive-code-assistant-v3
- glaiveai/glaive-function-calling-v2
- gretelai/synthetic_text_to_sql
- meta-math/MetaMathQA
- microsoft/orca-math-word-problems-200k
- neural-bridge/rag-dataset-12000
- neural-bridge/rag-hallucination-dataset-1000
- nvidia/HelpSteer
- OpenAssistant/oasst2
language:
- en
- ja
library_name: transformers
license: apache-2.0
tags:
- mixtral
- steerlm
- mlx
mlx-community/karakuri-lm-8x7b-instruct-v0.1-4bit
The Model mlx-community/karakuri-lm-8x7b-instruct-v0.1-4bit was converted to MLX format from karakuri-ai/karakuri-lm-8x7b-instruct-v0.1 using mlx-lm version 0.19.0.
Use with mlx
pip install mlx-lm
from mlx_lm import load, generate
model, tokenizer = load("mlx-community/karakuri-lm-8x7b-instruct-v0.1-4bit")
prompt="hello"
if hasattr(tokenizer, "apply_chat_template") and tokenizer.chat_template is not None:
messages = [{"role": "user", "content": prompt}]
prompt = tokenizer.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
response = generate(model, tokenizer, prompt=prompt, verbose=True)