Code snippet, yaml
#3
by
pcuenq
HF staff
- opened
README.md
CHANGED
@@ -1,3 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
# Mistral-7B-v0.1
|
2 |
|
3 |
The Mistral-7B-v0.1 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters.
|
@@ -5,9 +13,21 @@ Mistral-7B-v0.1 outperforms Llama 2 13B on all benchmarks we tested.
|
|
5 |
|
6 |
For full details of this model please read our [paper](https://arxiv.org/abs/2310.06825) and [release blog post](https://mistral.ai/news/announcing-mistral-7b/).
|
7 |
|
8 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
-
Mistral-7B-v0.1
|
11 |
-
- Grouped-Query Attention
|
12 |
-
- Sliding-Window Attention
|
13 |
-
- Byte-fallback BPE tokenizer
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: text-generation
|
3 |
+
inference: false
|
4 |
+
tags:
|
5 |
+
- mistral
|
6 |
+
- mlx
|
7 |
+
---
|
8 |
+
|
9 |
# Mistral-7B-v0.1
|
10 |
|
11 |
The Mistral-7B-v0.1 Large Language Model (LLM) is a pretrained generative text model with 7 billion parameters.
|
|
|
13 |
|
14 |
For full details of this model please read our [paper](https://arxiv.org/abs/2310.06825) and [release blog post](https://mistral.ai/news/announcing-mistral-7b/).
|
15 |
|
16 |
+
This repository contains the `mistral-7B-v0.1` weights in `npz` format suitable for use with Apple's MLX framework.
|
17 |
+
|
18 |
+
## Use with MLX
|
19 |
+
|
20 |
+
```bash
|
21 |
+
pip install mlx
|
22 |
+
pip install huggingface_hub hf_transfer
|
23 |
+
git clone https://github.com/ml-explore/mlx-examples.git
|
24 |
+
|
25 |
+
# Download model
|
26 |
+
export HF_HUB_ENABLE_HF_TRANSFER=1
|
27 |
+
huggingface-cli download --local-dir-use-symlinks False --local-dir mistral-7B-v0.1 mlx-community/mistral-7B-v0.1
|
28 |
+
|
29 |
+
# Run example
|
30 |
+
python mlx-examples/mistral/mistral.py --prompt "My name is" --model_path mistral-7B-v0.1
|
31 |
+
```
|
32 |
|
33 |
+
Please, refer to the [original model card](https://huggingface.co/mistralai/Mistral-7B-v0.1) for more details on Mistral-7B-v0.1.
|
|
|
|
|
|