metadata
language:
- multilingual
- af
- am
- ar
- as
- az
- be
- bg
- bn
- br
- bs
- ca
- cs
- cy
- da
- de
- el
- en
- eo
- es
- et
- eu
- fa
- fi
- fr
- fy
- ga
- gd
- gl
- gu
- ha
- he
- hi
- hr
- hu
- hy
- id
- is
- it
- ja
- jv
- ka
- kk
- km
- kn
- ko
- ku
- ky
- la
- lo
- lt
- lv
- mg
- mk
- ml
- mn
- mr
- ms
- my
- ne
- nl
- 'no'
- om
- or
- pa
- pl
- ps
- pt
- ro
- ru
- sa
- sd
- si
- sk
- sl
- so
- sq
- sr
- su
- sv
- sw
- ta
- te
- th
- tl
- tr
- ug
- uk
- ur
- uz
- vi
- xh
- yi
- zh
license: mit
tags:
- mteb
- Sentence Transformers
- sentence-similarity
- sentence-transformers
- mlx
model-index:
- name: multilingual-e5-base
results:
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en)
type: mteb/amazon_counterfactual
config: en
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 78.97014925373135
- type: ap
value: 43.69351129103008
- type: f1
value: 73.38075030070492
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (de)
type: mteb/amazon_counterfactual
config: de
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 71.7237687366167
- type: ap
value: 82.22089859962671
- type: f1
value: 69.95532758884401
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (en-ext)
type: mteb/amazon_counterfactual
config: en-ext
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 79.65517241379312
- type: ap
value: 28.507918657094738
- type: f1
value: 66.84516013726119
- task:
type: Classification
dataset:
name: MTEB AmazonCounterfactualClassification (ja)
type: mteb/amazon_counterfactual
config: ja
split: test
revision: e8379541af4e31359cca9fbcf4b00f2671dba205
metrics:
- type: accuracy
value: 73.32976445396146
- type: ap
value: 20.720481637566014
- type: f1
value: 59.78002763416003
- task:
type: Classification
dataset:
name: MTEB AmazonPolarityClassification
type: mteb/amazon_polarity
config: default
split: test
revision: e2d317d38cd51312af73b3d32a06d1a08b442046
metrics:
- type: accuracy
value: 90.63775
- type: ap
value: 87.22277903861716
- type: f1
value: 90.60378636386807
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (en)
type: mteb/amazon_reviews_multi
config: en
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 44.546
- type: f1
value: 44.05666638370923
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (de)
type: mteb/amazon_reviews_multi
config: de
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 41.828
- type: f1
value: 41.2710255644252
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (es)
type: mteb/amazon_reviews_multi
config: es
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 40.534
- type: f1
value: 39.820743174270326
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (fr)
type: mteb/amazon_reviews_multi
config: fr
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 39.684
- type: f1
value: 39.11052682815307
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (ja)
type: mteb/amazon_reviews_multi
config: ja
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 37.436
- type: f1
value: 37.07082931930871
- task:
type: Classification
dataset:
name: MTEB AmazonReviewsClassification (zh)
type: mteb/amazon_reviews_multi
config: zh
split: test
revision: 1399c76144fd37290681b995c656ef9b2e06e26d
metrics:
- type: accuracy
value: 37.226000000000006
- type: f1
value: 36.65372077739185
- task:
type: Retrieval
dataset:
name: MTEB ArguAna
type: arguana
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 22.831000000000003
- type: map_at_10
value: 36.42
- type: map_at_100
value: 37.699
- type: map_at_1000
value: 37.724000000000004
- type: map_at_3
value: 32.207
- type: map_at_5
value: 34.312
- type: mrr_at_1
value: 23.257
- type: mrr_at_10
value: 36.574
- type: mrr_at_100
value: 37.854
- type: mrr_at_1000
value: 37.878
- type: mrr_at_3
value: 32.385000000000005
- type: mrr_at_5
value: 34.48
- type: ndcg_at_1
value: 22.831000000000003
- type: ndcg_at_10
value: 44.230000000000004
- type: ndcg_at_100
value: 49.974000000000004
- type: ndcg_at_1000
value: 50.522999999999996
- type: ndcg_at_3
value: 35.363
- type: ndcg_at_5
value: 39.164
- type: precision_at_1
value: 22.831000000000003
- type: precision_at_10
value: 6.935
- type: precision_at_100
value: 0.9520000000000001
- type: precision_at_1000
value: 0.099
- type: precision_at_3
value: 14.841
- type: precision_at_5
value: 10.754
- type: recall_at_1
value: 22.831000000000003
- type: recall_at_10
value: 69.346
- type: recall_at_100
value: 95.235
- type: recall_at_1000
value: 99.36
- type: recall_at_3
value: 44.523
- type: recall_at_5
value: 53.769999999999996
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringP2P
type: mteb/arxiv-clustering-p2p
config: default
split: test
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
metrics:
- type: v_measure
value: 40.27789869854063
- task:
type: Clustering
dataset:
name: MTEB ArxivClusteringS2S
type: mteb/arxiv-clustering-s2s
config: default
split: test
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
metrics:
- type: v_measure
value: 35.41979463347428
- task:
type: Reranking
dataset:
name: MTEB AskUbuntuDupQuestions
type: mteb/askubuntudupquestions-reranking
config: default
split: test
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
metrics:
- type: map
value: 58.22752045109304
- type: mrr
value: 71.51112430198303
- task:
type: STS
dataset:
name: MTEB BIOSSES
type: mteb/biosses-sts
config: default
split: test
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
metrics:
- type: cos_sim_pearson
value: 84.71147646622866
- type: cos_sim_spearman
value: 85.059167046486
- type: euclidean_pearson
value: 75.88421613600647
- type: euclidean_spearman
value: 75.12821787150585
- type: manhattan_pearson
value: 75.22005646957604
- type: manhattan_spearman
value: 74.42880434453272
- task:
type: BitextMining
dataset:
name: MTEB BUCC (de-en)
type: mteb/bucc-bitext-mining
config: de-en
split: test
revision: d51519689f32196a32af33b075a01d0e7c51e252
metrics:
- type: accuracy
value: 99.23799582463465
- type: f1
value: 99.12665274878218
- type: precision
value: 99.07098121085595
- type: recall
value: 99.23799582463465
- task:
type: BitextMining
dataset:
name: MTEB BUCC (fr-en)
type: mteb/bucc-bitext-mining
config: fr-en
split: test
revision: d51519689f32196a32af33b075a01d0e7c51e252
metrics:
- type: accuracy
value: 97.88685890380806
- type: f1
value: 97.59336708489249
- type: precision
value: 97.44662117543473
- type: recall
value: 97.88685890380806
- task:
type: BitextMining
dataset:
name: MTEB BUCC (ru-en)
type: mteb/bucc-bitext-mining
config: ru-en
split: test
revision: d51519689f32196a32af33b075a01d0e7c51e252
metrics:
- type: accuracy
value: 97.47142362313821
- type: f1
value: 97.1989377670015
- type: precision
value: 97.06384944001847
- type: recall
value: 97.47142362313821
- task:
type: BitextMining
dataset:
name: MTEB BUCC (zh-en)
type: mteb/bucc-bitext-mining
config: zh-en
split: test
revision: d51519689f32196a32af33b075a01d0e7c51e252
metrics:
- type: accuracy
value: 98.4728804634018
- type: f1
value: 98.2973494821836
- type: precision
value: 98.2095839915745
- type: recall
value: 98.4728804634018
- task:
type: Classification
dataset:
name: MTEB Banking77Classification
type: mteb/banking77
config: default
split: test
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
metrics:
- type: accuracy
value: 82.74025974025975
- type: f1
value: 82.67420447730439
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringP2P
type: mteb/biorxiv-clustering-p2p
config: default
split: test
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
metrics:
- type: v_measure
value: 35.0380848063507
- task:
type: Clustering
dataset:
name: MTEB BiorxivClusteringS2S
type: mteb/biorxiv-clustering-s2s
config: default
split: test
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
metrics:
- type: v_measure
value: 29.45956405670166
- task:
type: Retrieval
dataset:
name: MTEB CQADupstackAndroidRetrieval
type: BeIR/cqadupstack
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 32.122
- type: map_at_10
value: 42.03
- type: map_at_100
value: 43.364000000000004
- type: map_at_1000
value: 43.474000000000004
- type: map_at_3
value: 38.804
- type: map_at_5
value: 40.585
- type: mrr_at_1
value: 39.914
- type: mrr_at_10
value: 48.227
- type: mrr_at_100
value: 49.018
- type: mrr_at_1000
value: 49.064
- type: mrr_at_3
value: 45.994
- type: mrr_at_5
value: 47.396
- type: ndcg_at_1
value: 39.914
- type: ndcg_at_10
value: 47.825
- type: ndcg_at_100
value: 52.852
- type: ndcg_at_1000
value: 54.891
- type: ndcg_at_3
value: 43.517
- type: ndcg_at_5
value: 45.493
- type: precision_at_1
value: 39.914
- type: precision_at_10
value: 8.956
- type: precision_at_100
value: 1.388
- type: precision_at_1000
value: 0.182
- type: precision_at_3
value: 20.791999999999998
- type: precision_at_5
value: 14.821000000000002
- type: recall_at_1
value: 32.122
- type: recall_at_10
value: 58.294999999999995
- type: recall_at_100
value: 79.726
- type: recall_at_1000
value: 93.099
- type: recall_at_3
value: 45.017
- type: recall_at_5
value: 51.002
- type: map_at_1
value: 29.677999999999997
- type: map_at_10
value: 38.684000000000005
- type: map_at_100
value: 39.812999999999995
- type: map_at_1000
value: 39.945
- type: map_at_3
value: 35.831
- type: map_at_5
value: 37.446
- type: mrr_at_1
value: 37.771
- type: mrr_at_10
value: 44.936
- type: mrr_at_100
value: 45.583
- type: mrr_at_1000
value: 45.634
- type: mrr_at_3
value: 42.771
- type: mrr_at_5
value: 43.994
- type: ndcg_at_1
value: 37.771
- type: ndcg_at_10
value: 44.059
- type: ndcg_at_100
value: 48.192
- type: ndcg_at_1000
value: 50.375
- type: ndcg_at_3
value: 40.172000000000004
- type: ndcg_at_5
value: 41.899
- type: precision_at_1
value: 37.771
- type: precision_at_10
value: 8.286999999999999
- type: precision_at_100
value: 1.322
- type: precision_at_1000
value: 0.178
- type: precision_at_3
value: 19.406000000000002
- type: precision_at_5
value: 13.745
- type: recall_at_1
value: 29.677999999999997
- type: recall_at_10
value: 53.071
- type: recall_at_100
value: 70.812
- type: recall_at_1000
value: 84.841
- type: recall_at_3
value: 41.016000000000005
- type: recall_at_5
value: 46.22
- type: map_at_1
value: 42.675000000000004
- type: map_at_10
value: 53.93599999999999
- type: map_at_100
value: 54.806999999999995
- type: map_at_1000
value: 54.867
- type: map_at_3
value: 50.934000000000005
- type: map_at_5
value: 52.583
- type: mrr_at_1
value: 48.339
- type: mrr_at_10
value: 57.265
- type: mrr_at_100
value: 57.873
- type: mrr_at_1000
value: 57.906
- type: mrr_at_3
value: 55.193000000000005
- type: mrr_at_5
value: 56.303000000000004
- type: ndcg_at_1
value: 48.339
- type: ndcg_at_10
value: 59.19799999999999
- type: ndcg_at_100
value: 62.743
- type: ndcg_at_1000
value: 63.99399999999999
- type: ndcg_at_3
value: 54.367
- type: ndcg_at_5
value: 56.548
- type: precision_at_1
value: 48.339
- type: precision_at_10
value: 9.216000000000001
- type: precision_at_100
value: 1.1809999999999998
- type: precision_at_1000
value: 0.134
- type: precision_at_3
value: 23.72
- type: precision_at_5
value: 16.025
- type: recall_at_1
value: 42.675000000000004
- type: recall_at_10
value: 71.437
- type: recall_at_100
value: 86.803
- type: recall_at_1000
value: 95.581
- type: recall_at_3
value: 58.434
- type: recall_at_5
value: 63.754
- type: map_at_1
value: 23.518
- type: map_at_10
value: 30.648999999999997
- type: map_at_100
value: 31.508999999999997
- type: map_at_1000
value: 31.604
- type: map_at_3
value: 28.247
- type: map_at_5
value: 29.65
- type: mrr_at_1
value: 25.650000000000002
- type: mrr_at_10
value: 32.771
- type: mrr_at_100
value: 33.554
- type: mrr_at_1000
value: 33.629999999999995
- type: mrr_at_3
value: 30.433
- type: mrr_at_5
value: 31.812
- type: ndcg_at_1
value: 25.650000000000002
- type: ndcg_at_10
value: 34.929
- type: ndcg_at_100
value: 39.382
- type: ndcg_at_1000
value: 41.913
- type: ndcg_at_3
value: 30.292
- type: ndcg_at_5
value: 32.629999999999995
- type: precision_at_1
value: 25.650000000000002
- type: precision_at_10
value: 5.311
- type: precision_at_100
value: 0.792
- type: precision_at_1000
value: 0.105
- type: precision_at_3
value: 12.58
- type: precision_at_5
value: 8.994
- type: recall_at_1
value: 23.518
- type: recall_at_10
value: 46.19
- type: recall_at_100
value: 67.123
- type: recall_at_1000
value: 86.442
- type: recall_at_3
value: 33.678000000000004
- type: recall_at_5
value: 39.244
- type: map_at_1
value: 15.891
- type: map_at_10
value: 22.464000000000002
- type: map_at_100
value: 23.483
- type: map_at_1000
value: 23.613
- type: map_at_3
value: 20.080000000000002
- type: map_at_5
value: 21.526
- type: mrr_at_1
value: 20.025000000000002
- type: mrr_at_10
value: 26.712999999999997
- type: mrr_at_100
value: 27.650000000000002
- type: mrr_at_1000
value: 27.737000000000002
- type: mrr_at_3
value: 24.274
- type: mrr_at_5
value: 25.711000000000002
- type: ndcg_at_1
value: 20.025000000000002
- type: ndcg_at_10
value: 27.028999999999996
- type: ndcg_at_100
value: 32.064
- type: ndcg_at_1000
value: 35.188
- type: ndcg_at_3
value: 22.512999999999998
- type: ndcg_at_5
value: 24.89
- type: precision_at_1
value: 20.025000000000002
- type: precision_at_10
value: 4.776
- type: precision_at_100
value: 0.8500000000000001
- type: precision_at_1000
value: 0.125
- type: precision_at_3
value: 10.531
- type: precision_at_5
value: 7.811
- type: recall_at_1
value: 15.891
- type: recall_at_10
value: 37.261
- type: recall_at_100
value: 59.12
- type: recall_at_1000
value: 81.356
- type: recall_at_3
value: 24.741
- type: recall_at_5
value: 30.753999999999998
- type: map_at_1
value: 27.544
- type: map_at_10
value: 36.283
- type: map_at_100
value: 37.467
- type: map_at_1000
value: 37.574000000000005
- type: map_at_3
value: 33.528999999999996
- type: map_at_5
value: 35.028999999999996
- type: mrr_at_1
value: 34.166999999999994
- type: mrr_at_10
value: 41.866
- type: mrr_at_100
value: 42.666
- type: mrr_at_1000
value: 42.716
- type: mrr_at_3
value: 39.541
- type: mrr_at_5
value: 40.768
- type: ndcg_at_1
value: 34.166999999999994
- type: ndcg_at_10
value: 41.577
- type: ndcg_at_100
value: 46.687
- type: ndcg_at_1000
value: 48.967
- type: ndcg_at_3
value: 37.177
- type: ndcg_at_5
value: 39.097
- type: precision_at_1
value: 34.166999999999994
- type: precision_at_10
value: 7.420999999999999
- type: precision_at_100
value: 1.165
- type: precision_at_1000
value: 0.154
- type: precision_at_3
value: 17.291999999999998
- type: precision_at_5
value: 12.166
- type: recall_at_1
value: 27.544
- type: recall_at_10
value: 51.99399999999999
- type: recall_at_100
value: 73.738
- type: recall_at_1000
value: 89.33
- type: recall_at_3
value: 39.179
- type: recall_at_5
value: 44.385999999999996
- type: map_at_1
value: 26.661
- type: map_at_10
value: 35.475
- type: map_at_100
value: 36.626999999999995
- type: map_at_1000
value: 36.741
- type: map_at_3
value: 32.818000000000005
- type: map_at_5
value: 34.397
- type: mrr_at_1
value: 32.647999999999996
- type: mrr_at_10
value: 40.784
- type: mrr_at_100
value: 41.602
- type: mrr_at_1000
value: 41.661
- type: mrr_at_3
value: 38.68
- type: mrr_at_5
value: 39.838
- type: ndcg_at_1
value: 32.647999999999996
- type: ndcg_at_10
value: 40.697
- type: ndcg_at_100
value: 45.799
- type: ndcg_at_1000
value: 48.235
- type: ndcg_at_3
value: 36.516
- type: ndcg_at_5
value: 38.515
- type: precision_at_1
value: 32.647999999999996
- type: precision_at_10
value: 7.202999999999999
- type: precision_at_100
value: 1.1360000000000001
- type: precision_at_1000
value: 0.151
- type: precision_at_3
value: 17.314
- type: precision_at_5
value: 12.145999999999999
- type: recall_at_1
value: 26.661
- type: recall_at_10
value: 50.995000000000005
- type: recall_at_100
value: 73.065
- type: recall_at_1000
value: 89.781
- type: recall_at_3
value: 39.073
- type: recall_at_5
value: 44.395
- type: map_at_1
value: 25.946583333333333
- type: map_at_10
value: 33.79725
- type: map_at_100
value: 34.86408333333333
- type: map_at_1000
value: 34.9795
- type: map_at_3
value: 31.259999999999998
- type: map_at_5
value: 32.71541666666666
- type: mrr_at_1
value: 30.863749999999996
- type: mrr_at_10
value: 37.99183333333333
- type: mrr_at_100
value: 38.790499999999994
- type: mrr_at_1000
value: 38.85575000000001
- type: mrr_at_3
value: 35.82083333333333
- type: mrr_at_5
value: 37.07533333333333
- type: ndcg_at_1
value: 30.863749999999996
- type: ndcg_at_10
value: 38.52141666666667
- type: ndcg_at_100
value: 43.17966666666667
- type: ndcg_at_1000
value: 45.64608333333333
- type: ndcg_at_3
value: 34.333000000000006
- type: ndcg_at_5
value: 36.34975
- type: precision_at_1
value: 30.863749999999996
- type: precision_at_10
value: 6.598999999999999
- type: precision_at_100
value: 1.0502500000000001
- type: precision_at_1000
value: 0.14400000000000002
- type: precision_at_3
value: 15.557583333333334
- type: precision_at_5
value: 11.020000000000001
- type: recall_at_1
value: 25.946583333333333
- type: recall_at_10
value: 48.36991666666666
- type: recall_at_100
value: 69.02408333333334
- type: recall_at_1000
value: 86.43858333333331
- type: recall_at_3
value: 36.4965
- type: recall_at_5
value: 41.76258333333334
- type: map_at_1
value: 22.431
- type: map_at_10
value: 28.889
- type: map_at_100
value: 29.642000000000003
- type: map_at_1000
value: 29.742
- type: map_at_3
value: 26.998
- type: map_at_5
value: 28.172000000000004
- type: mrr_at_1
value: 25.307000000000002
- type: mrr_at_10
value: 31.763
- type: mrr_at_100
value: 32.443
- type: mrr_at_1000
value: 32.531
- type: mrr_at_3
value: 29.959000000000003
- type: mrr_at_5
value: 31.063000000000002
- type: ndcg_at_1
value: 25.307000000000002
- type: ndcg_at_10
value: 32.586999999999996
- type: ndcg_at_100
value: 36.5
- type: ndcg_at_1000
value: 39.133
- type: ndcg_at_3
value: 29.25
- type: ndcg_at_5
value: 31.023
- type: precision_at_1
value: 25.307000000000002
- type: precision_at_10
value: 4.954
- type: precision_at_100
value: 0.747
- type: precision_at_1000
value: 0.104
- type: precision_at_3
value: 12.577
- type: precision_at_5
value: 8.741999999999999
- type: recall_at_1
value: 22.431
- type: recall_at_10
value: 41.134
- type: recall_at_100
value: 59.28600000000001
- type: recall_at_1000
value: 78.857
- type: recall_at_3
value: 31.926
- type: recall_at_5
value: 36.335
- type: map_at_1
value: 17.586
- type: map_at_10
value: 23.304
- type: map_at_100
value: 24.159
- type: map_at_1000
value: 24.281
- type: map_at_3
value: 21.316
- type: map_at_5
value: 22.383
- type: mrr_at_1
value: 21.645
- type: mrr_at_10
value: 27.365000000000002
- type: mrr_at_100
value: 28.108
- type: mrr_at_1000
value: 28.192
- type: mrr_at_3
value: 25.482
- type: mrr_at_5
value: 26.479999999999997
- type: ndcg_at_1
value: 21.645
- type: ndcg_at_10
value: 27.306
- type: ndcg_at_100
value: 31.496000000000002
- type: ndcg_at_1000
value: 34.53
- type: ndcg_at_3
value: 23.73
- type: ndcg_at_5
value: 25.294
- type: precision_at_1
value: 21.645
- type: precision_at_10
value: 4.797
- type: precision_at_100
value: 0.8059999999999999
- type: precision_at_1000
value: 0.121
- type: precision_at_3
value: 10.850999999999999
- type: precision_at_5
value: 7.736
- type: recall_at_1
value: 17.586
- type: recall_at_10
value: 35.481
- type: recall_at_100
value: 54.534000000000006
- type: recall_at_1000
value: 76.456
- type: recall_at_3
value: 25.335
- type: recall_at_5
value: 29.473
- type: map_at_1
value: 25.095
- type: map_at_10
value: 32.374
- type: map_at_100
value: 33.537
- type: map_at_1000
value: 33.634
- type: map_at_3
value: 30.089
- type: map_at_5
value: 31.433
- type: mrr_at_1
value: 29.198
- type: mrr_at_10
value: 36.01
- type: mrr_at_100
value: 37.022
- type: mrr_at_1000
value: 37.083
- type: mrr_at_3
value: 33.94
- type: mrr_at_5
value: 35.148
- type: ndcg_at_1
value: 29.198
- type: ndcg_at_10
value: 36.729
- type: ndcg_at_100
value: 42.114000000000004
- type: ndcg_at_1000
value: 44.592
- type: ndcg_at_3
value: 32.644
- type: ndcg_at_5
value: 34.652
- type: precision_at_1
value: 29.198
- type: precision_at_10
value: 5.970000000000001
- type: precision_at_100
value: 0.967
- type: precision_at_1000
value: 0.129
- type: precision_at_3
value: 14.396999999999998
- type: precision_at_5
value: 10.093
- type: recall_at_1
value: 25.095
- type: recall_at_10
value: 46.392
- type: recall_at_100
value: 69.706
- type: recall_at_1000
value: 87.738
- type: recall_at_3
value: 35.303000000000004
- type: recall_at_5
value: 40.441
- type: map_at_1
value: 26.857999999999997
- type: map_at_10
value: 34.066
- type: map_at_100
value: 35.671
- type: map_at_1000
value: 35.881
- type: map_at_3
value: 31.304
- type: map_at_5
value: 32.885
- type: mrr_at_1
value: 32.411
- type: mrr_at_10
value: 38.987
- type: mrr_at_100
value: 39.894
- type: mrr_at_1000
value: 39.959
- type: mrr_at_3
value: 36.626999999999995
- type: mrr_at_5
value: 38.011
- type: ndcg_at_1
value: 32.411
- type: ndcg_at_10
value: 39.208
- type: ndcg_at_100
value: 44.626
- type: ndcg_at_1000
value: 47.43
- type: ndcg_at_3
value: 35.091
- type: ndcg_at_5
value: 37.119
- type: precision_at_1
value: 32.411
- type: precision_at_10
value: 7.51
- type: precision_at_100
value: 1.486
- type: precision_at_1000
value: 0.234
- type: precision_at_3
value: 16.14
- type: precision_at_5
value: 11.976
- type: recall_at_1
value: 26.857999999999997
- type: recall_at_10
value: 47.407
- type: recall_at_100
value: 72.236
- type: recall_at_1000
value: 90.77
- type: recall_at_3
value: 35.125
- type: recall_at_5
value: 40.522999999999996
- type: map_at_1
value: 21.3
- type: map_at_10
value: 27.412999999999997
- type: map_at_100
value: 28.29
- type: map_at_1000
value: 28.398
- type: map_at_3
value: 25.169999999999998
- type: map_at_5
value: 26.496
- type: mrr_at_1
value: 23.29
- type: mrr_at_10
value: 29.215000000000003
- type: mrr_at_100
value: 30.073
- type: mrr_at_1000
value: 30.156
- type: mrr_at_3
value: 26.956000000000003
- type: mrr_at_5
value: 28.38
- type: ndcg_at_1
value: 23.29
- type: ndcg_at_10
value: 31.113000000000003
- type: ndcg_at_100
value: 35.701
- type: ndcg_at_1000
value: 38.505
- type: ndcg_at_3
value: 26.727
- type: ndcg_at_5
value: 29.037000000000003
- type: precision_at_1
value: 23.29
- type: precision_at_10
value: 4.787
- type: precision_at_100
value: 0.763
- type: precision_at_1000
value: 0.11100000000000002
- type: precision_at_3
value: 11.091
- type: precision_at_5
value: 7.985
- type: recall_at_1
value: 21.3
- type: recall_at_10
value: 40.782000000000004
- type: recall_at_100
value: 62.13999999999999
- type: recall_at_1000
value: 83.012
- type: recall_at_3
value: 29.131
- type: recall_at_5
value: 34.624
- task:
type: Retrieval
dataset:
name: MTEB ClimateFEVER
type: climate-fever
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 9.631
- type: map_at_10
value: 16.634999999999998
- type: map_at_100
value: 18.23
- type: map_at_1000
value: 18.419
- type: map_at_3
value: 13.66
- type: map_at_5
value: 15.173
- type: mrr_at_1
value: 21.368000000000002
- type: mrr_at_10
value: 31.56
- type: mrr_at_100
value: 32.58
- type: mrr_at_1000
value: 32.633
- type: mrr_at_3
value: 28.241
- type: mrr_at_5
value: 30.225
- type: ndcg_at_1
value: 21.368000000000002
- type: ndcg_at_10
value: 23.855999999999998
- type: ndcg_at_100
value: 30.686999999999998
- type: ndcg_at_1000
value: 34.327000000000005
- type: ndcg_at_3
value: 18.781
- type: ndcg_at_5
value: 20.73
- type: precision_at_1
value: 21.368000000000002
- type: precision_at_10
value: 7.564
- type: precision_at_100
value: 1.496
- type: precision_at_1000
value: 0.217
- type: precision_at_3
value: 13.876
- type: precision_at_5
value: 11.062
- type: recall_at_1
value: 9.631
- type: recall_at_10
value: 29.517
- type: recall_at_100
value: 53.452
- type: recall_at_1000
value: 74.115
- type: recall_at_3
value: 17.605999999999998
- type: recall_at_5
value: 22.505
- task:
type: Retrieval
dataset:
name: MTEB DBPedia
type: dbpedia-entity
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 8.885
- type: map_at_10
value: 18.798000000000002
- type: map_at_100
value: 26.316
- type: map_at_1000
value: 27.869
- type: map_at_3
value: 13.719000000000001
- type: map_at_5
value: 15.716
- type: mrr_at_1
value: 66
- type: mrr_at_10
value: 74.263
- type: mrr_at_100
value: 74.519
- type: mrr_at_1000
value: 74.531
- type: mrr_at_3
value: 72.458
- type: mrr_at_5
value: 73.321
- type: ndcg_at_1
value: 53.87499999999999
- type: ndcg_at_10
value: 40.355999999999995
- type: ndcg_at_100
value: 44.366
- type: ndcg_at_1000
value: 51.771
- type: ndcg_at_3
value: 45.195
- type: ndcg_at_5
value: 42.187000000000005
- type: precision_at_1
value: 66
- type: precision_at_10
value: 31.75
- type: precision_at_100
value: 10.11
- type: precision_at_1000
value: 1.9800000000000002
- type: precision_at_3
value: 48.167
- type: precision_at_5
value: 40.050000000000004
- type: recall_at_1
value: 8.885
- type: recall_at_10
value: 24.471999999999998
- type: recall_at_100
value: 49.669000000000004
- type: recall_at_1000
value: 73.383
- type: recall_at_3
value: 14.872
- type: recall_at_5
value: 18.262999999999998
- task:
type: Classification
dataset:
name: MTEB EmotionClassification
type: mteb/emotion
config: default
split: test
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
metrics:
- type: accuracy
value: 45.18
- type: f1
value: 40.26878691789978
- task:
type: Retrieval
dataset:
name: MTEB FEVER
type: fever
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 62.751999999999995
- type: map_at_10
value: 74.131
- type: map_at_100
value: 74.407
- type: map_at_1000
value: 74.423
- type: map_at_3
value: 72.329
- type: map_at_5
value: 73.555
- type: mrr_at_1
value: 67.282
- type: mrr_at_10
value: 78.292
- type: mrr_at_100
value: 78.455
- type: mrr_at_1000
value: 78.458
- type: mrr_at_3
value: 76.755
- type: mrr_at_5
value: 77.839
- type: ndcg_at_1
value: 67.282
- type: ndcg_at_10
value: 79.443
- type: ndcg_at_100
value: 80.529
- type: ndcg_at_1000
value: 80.812
- type: ndcg_at_3
value: 76.281
- type: ndcg_at_5
value: 78.235
- type: precision_at_1
value: 67.282
- type: precision_at_10
value: 10.078
- type: precision_at_100
value: 1.082
- type: precision_at_1000
value: 0.11199999999999999
- type: precision_at_3
value: 30.178
- type: precision_at_5
value: 19.232
- type: recall_at_1
value: 62.751999999999995
- type: recall_at_10
value: 91.521
- type: recall_at_100
value: 95.997
- type: recall_at_1000
value: 97.775
- type: recall_at_3
value: 83.131
- type: recall_at_5
value: 87.93299999999999
- task:
type: Retrieval
dataset:
name: MTEB FiQA2018
type: fiqa
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 18.861
- type: map_at_10
value: 30.252000000000002
- type: map_at_100
value: 32.082
- type: map_at_1000
value: 32.261
- type: map_at_3
value: 25.909
- type: map_at_5
value: 28.296
- type: mrr_at_1
value: 37.346000000000004
- type: mrr_at_10
value: 45.802
- type: mrr_at_100
value: 46.611999999999995
- type: mrr_at_1000
value: 46.659
- type: mrr_at_3
value: 43.056
- type: mrr_at_5
value: 44.637
- type: ndcg_at_1
value: 37.346000000000004
- type: ndcg_at_10
value: 38.169
- type: ndcg_at_100
value: 44.864
- type: ndcg_at_1000
value: 47.974
- type: ndcg_at_3
value: 33.619
- type: ndcg_at_5
value: 35.317
- type: precision_at_1
value: 37.346000000000004
- type: precision_at_10
value: 10.693999999999999
- type: precision_at_100
value: 1.775
- type: precision_at_1000
value: 0.231
- type: precision_at_3
value: 22.325
- type: precision_at_5
value: 16.852
- type: recall_at_1
value: 18.861
- type: recall_at_10
value: 45.672000000000004
- type: recall_at_100
value: 70.60499999999999
- type: recall_at_1000
value: 89.216
- type: recall_at_3
value: 30.361
- type: recall_at_5
value: 36.998999999999995
- task:
type: Retrieval
dataset:
name: MTEB HotpotQA
type: hotpotqa
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 37.852999999999994
- type: map_at_10
value: 59.961
- type: map_at_100
value: 60.78
- type: map_at_1000
value: 60.843
- type: map_at_3
value: 56.39999999999999
- type: map_at_5
value: 58.646
- type: mrr_at_1
value: 75.70599999999999
- type: mrr_at_10
value: 82.321
- type: mrr_at_100
value: 82.516
- type: mrr_at_1000
value: 82.525
- type: mrr_at_3
value: 81.317
- type: mrr_at_5
value: 81.922
- type: ndcg_at_1
value: 75.70599999999999
- type: ndcg_at_10
value: 68.557
- type: ndcg_at_100
value: 71.485
- type: ndcg_at_1000
value: 72.71600000000001
- type: ndcg_at_3
value: 63.524
- type: ndcg_at_5
value: 66.338
- type: precision_at_1
value: 75.70599999999999
- type: precision_at_10
value: 14.463000000000001
- type: precision_at_100
value: 1.677
- type: precision_at_1000
value: 0.184
- type: precision_at_3
value: 40.806
- type: precision_at_5
value: 26.709
- type: recall_at_1
value: 37.852999999999994
- type: recall_at_10
value: 72.316
- type: recall_at_100
value: 83.842
- type: recall_at_1000
value: 91.999
- type: recall_at_3
value: 61.209
- type: recall_at_5
value: 66.77199999999999
- task:
type: Classification
dataset:
name: MTEB ImdbClassification
type: mteb/imdb
config: default
split: test
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
metrics:
- type: accuracy
value: 85.46039999999999
- type: ap
value: 79.9812521351881
- type: f1
value: 85.31722909702084
- task:
type: Retrieval
dataset:
name: MTEB MSMARCO
type: msmarco
config: default
split: dev
revision: None
metrics:
- type: map_at_1
value: 22.704
- type: map_at_10
value: 35.329
- type: map_at_100
value: 36.494
- type: map_at_1000
value: 36.541000000000004
- type: map_at_3
value: 31.476
- type: map_at_5
value: 33.731
- type: mrr_at_1
value: 23.294999999999998
- type: mrr_at_10
value: 35.859
- type: mrr_at_100
value: 36.968
- type: mrr_at_1000
value: 37.008
- type: mrr_at_3
value: 32.085
- type: mrr_at_5
value: 34.299
- type: ndcg_at_1
value: 23.324
- type: ndcg_at_10
value: 42.274
- type: ndcg_at_100
value: 47.839999999999996
- type: ndcg_at_1000
value: 48.971
- type: ndcg_at_3
value: 34.454
- type: ndcg_at_5
value: 38.464
- type: precision_at_1
value: 23.324
- type: precision_at_10
value: 6.648
- type: precision_at_100
value: 0.9440000000000001
- type: precision_at_1000
value: 0.104
- type: precision_at_3
value: 14.674999999999999
- type: precision_at_5
value: 10.850999999999999
- type: recall_at_1
value: 22.704
- type: recall_at_10
value: 63.660000000000004
- type: recall_at_100
value: 89.29899999999999
- type: recall_at_1000
value: 97.88900000000001
- type: recall_at_3
value: 42.441
- type: recall_at_5
value: 52.04
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (en)
type: mteb/mtop_domain
config: en
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 93.1326949384405
- type: f1
value: 92.89743579612082
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (de)
type: mteb/mtop_domain
config: de
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 89.62524654832347
- type: f1
value: 88.65106082263151
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (es)
type: mteb/mtop_domain
config: es
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 90.59039359573046
- type: f1
value: 90.31532892105662
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (fr)
type: mteb/mtop_domain
config: fr
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 86.21046038208581
- type: f1
value: 86.41459529813113
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (hi)
type: mteb/mtop_domain
config: hi
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 87.3180351380423
- type: f1
value: 86.71383078226444
- task:
type: Classification
dataset:
name: MTEB MTOPDomainClassification (th)
type: mteb/mtop_domain
config: th
split: test
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
metrics:
- type: accuracy
value: 86.24231464737792
- type: f1
value: 86.31845567592403
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (en)
type: mteb/mtop_intent
config: en
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 75.27131782945736
- type: f1
value: 57.52079940417103
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (de)
type: mteb/mtop_intent
config: de
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 71.2341504649197
- type: f1
value: 51.349951558039244
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (es)
type: mteb/mtop_intent
config: es
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 71.27418278852569
- type: f1
value: 50.1714985749095
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (fr)
type: mteb/mtop_intent
config: fr
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 67.68243031631694
- type: f1
value: 50.1066160836192
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (hi)
type: mteb/mtop_intent
config: hi
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 69.2362854069559
- type: f1
value: 48.821279948766424
- task:
type: Classification
dataset:
name: MTEB MTOPIntentClassification (th)
type: mteb/mtop_intent
config: th
split: test
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
metrics:
- type: accuracy
value: 71.71428571428571
- type: f1
value: 53.94611389496195
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (af)
type: mteb/amazon_massive_intent
config: af
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 59.97646267652992
- type: f1
value: 57.26797883561521
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (am)
type: mteb/amazon_massive_intent
config: am
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 53.65501008742435
- type: f1
value: 50.416258382177034
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ar)
type: mteb/amazon_massive_intent
config: ar
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 57.45796906523201
- type: f1
value: 53.306690547422185
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (az)
type: mteb/amazon_massive_intent
config: az
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 62.59246805648957
- type: f1
value: 59.818381969051494
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (bn)
type: mteb/amazon_massive_intent
config: bn
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 61.126429051782104
- type: f1
value: 58.25993593933026
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (cy)
type: mteb/amazon_massive_intent
config: cy
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 50.057162071284466
- type: f1
value: 46.96095728790911
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (da)
type: mteb/amazon_massive_intent
config: da
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 66.64425016812375
- type: f1
value: 62.858291698755764
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (de)
type: mteb/amazon_massive_intent
config: de
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 66.08944182918628
- type: f1
value: 62.44639030604241
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (el)
type: mteb/amazon_massive_intent
config: el
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 64.68056489576328
- type: f1
value: 61.775326758789504
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (en)
type: mteb/amazon_massive_intent
config: en
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 72.11163416274377
- type: f1
value: 69.70789096927015
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (es)
type: mteb/amazon_massive_intent
config: es
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 68.40282447881641
- type: f1
value: 66.38492065671895
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (fa)
type: mteb/amazon_massive_intent
config: fa
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 67.24613315400134
- type: f1
value: 64.3348019501336
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (fi)
type: mteb/amazon_massive_intent
config: fi
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 65.78345662407531
- type: f1
value: 62.21279452354622
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (fr)
type: mteb/amazon_massive_intent
config: fr
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 67.9455279085407
- type: f1
value: 65.48193124964094
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (he)
type: mteb/amazon_massive_intent
config: he
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 62.05110961667788
- type: f1
value: 58.097856564684534
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (hi)
type: mteb/amazon_massive_intent
config: hi
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 64.95292535305985
- type: f1
value: 62.09182174767901
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (hu)
type: mteb/amazon_massive_intent
config: hu
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 64.97310020174848
- type: f1
value: 61.14252567730396
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (hy)
type: mteb/amazon_massive_intent
config: hy
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 60.08069939475453
- type: f1
value: 57.044041742492034
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (id)
type: mteb/amazon_massive_intent
config: id
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 66.63752521856085
- type: f1
value: 63.889340907205316
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (is)
type: mteb/amazon_massive_intent
config: is
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 56.385339609952936
- type: f1
value: 53.449033750088304
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (it)
type: mteb/amazon_massive_intent
config: it
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 68.93073301950234
- type: f1
value: 65.9884357824104
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ja)
type: mteb/amazon_massive_intent
config: ja
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 68.94418291862812
- type: f1
value: 66.48740222583132
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (jv)
type: mteb/amazon_massive_intent
config: jv
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 54.26025554808339
- type: f1
value: 50.19562815100793
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ka)
type: mteb/amazon_massive_intent
config: ka
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 48.98789509078682
- type: f1
value: 46.65788438676836
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (km)
type: mteb/amazon_massive_intent
config: km
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 44.68728984532616
- type: f1
value: 41.642419349541996
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (kn)
type: mteb/amazon_massive_intent
config: kn
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 59.19300605245461
- type: f1
value: 55.8626492442437
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ko)
type: mteb/amazon_massive_intent
config: ko
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 66.33826496301278
- type: f1
value: 63.89499791648792
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (lv)
type: mteb/amazon_massive_intent
config: lv
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 60.33960995292536
- type: f1
value: 57.15242464180892
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ml)
type: mteb/amazon_massive_intent
config: ml
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 63.09347679892402
- type: f1
value: 59.64733214063841
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (mn)
type: mteb/amazon_massive_intent
config: mn
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 58.75924680564896
- type: f1
value: 55.96585692366827
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ms)
type: mteb/amazon_massive_intent
config: ms
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 62.48486886348352
- type: f1
value: 59.45143559032946
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (my)
type: mteb/amazon_massive_intent
config: my
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 58.56422326832549
- type: f1
value: 54.96368702901926
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (nb)
type: mteb/amazon_massive_intent
config: nb
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 66.18022864828512
- type: f1
value: 63.05369805040634
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (nl)
type: mteb/amazon_massive_intent
config: nl
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 67.30329522528581
- type: f1
value: 64.06084612020727
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (pl)
type: mteb/amazon_massive_intent
config: pl
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 68.36919973100201
- type: f1
value: 65.12154124788887
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (pt)
type: mteb/amazon_massive_intent
config: pt
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 68.98117014122394
- type: f1
value: 66.41847559806962
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ro)
type: mteb/amazon_massive_intent
config: ro
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 65.53799596503026
- type: f1
value: 62.17067330740817
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ru)
type: mteb/amazon_massive_intent
config: ru
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 69.01815736381977
- type: f1
value: 66.24988369607843
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (sl)
type: mteb/amazon_massive_intent
config: sl
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 62.34700739744452
- type: f1
value: 59.957933424941636
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (sq)
type: mteb/amazon_massive_intent
config: sq
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 61.23402824478815
- type: f1
value: 57.98836976018471
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (sv)
type: mteb/amazon_massive_intent
config: sv
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 68.54068594485541
- type: f1
value: 65.43849680666855
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (sw)
type: mteb/amazon_massive_intent
config: sw
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 55.998655010087425
- type: f1
value: 52.83737515406804
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ta)
type: mteb/amazon_massive_intent
config: ta
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 58.71217215870882
- type: f1
value: 55.051794977833026
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (te)
type: mteb/amazon_massive_intent
config: te
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 59.724277067921996
- type: f1
value: 56.33485571838306
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (th)
type: mteb/amazon_massive_intent
config: th
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 65.59515803631473
- type: f1
value: 64.96772366193588
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (tl)
type: mteb/amazon_massive_intent
config: tl
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 60.860793544048406
- type: f1
value: 58.148845819115394
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (tr)
type: mteb/amazon_massive_intent
config: tr
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 67.40753194351043
- type: f1
value: 63.18903778054698
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (ur)
type: mteb/amazon_massive_intent
config: ur
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 61.52320107599194
- type: f1
value: 58.356144563398516
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (vi)
type: mteb/amazon_massive_intent
config: vi
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 66.17014122394083
- type: f1
value: 63.919964062638925
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (zh-CN)
type: mteb/amazon_massive_intent
config: zh-CN
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 69.15601882985878
- type: f1
value: 67.01451905761371
- task:
type: Classification
dataset:
name: MTEB MassiveIntentClassification (zh-TW)
type: mteb/amazon_massive_intent
config: zh-TW
split: test
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
metrics:
- type: accuracy
value: 64.65030262273034
- type: f1
value: 64.14420425129063
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (af)
type: mteb/amazon_massive_scenario
config: af
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 65.08742434431743
- type: f1
value: 63.044060042311756
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (am)
type: mteb/amazon_massive_scenario
config: am
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 58.52387357094821
- type: f1
value: 56.82398588814534
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ar)
type: mteb/amazon_massive_scenario
config: ar
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 62.239408204438476
- type: f1
value: 61.92570286170469
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (az)
type: mteb/amazon_massive_scenario
config: az
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 63.74915938130463
- type: f1
value: 62.130740689396276
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (bn)
type: mteb/amazon_massive_scenario
config: bn
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 65.00336247478144
- type: f1
value: 63.71080635228055
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (cy)
type: mteb/amazon_massive_scenario
config: cy
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 52.837928715534645
- type: f1
value: 50.390741680320836
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (da)
type: mteb/amazon_massive_scenario
config: da
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 72.42098184263618
- type: f1
value: 71.41355113538995
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (de)
type: mteb/amazon_massive_scenario
config: de
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 71.95359784801613
- type: f1
value: 71.42699340156742
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (el)
type: mteb/amazon_massive_scenario
config: el
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 70.18157363819772
- type: f1
value: 69.74836113037671
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (en)
type: mteb/amazon_massive_scenario
config: en
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 77.08137188971082
- type: f1
value: 76.78000685068261
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (es)
type: mteb/amazon_massive_scenario
config: es
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 71.5030262273033
- type: f1
value: 71.71620130425673
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (fa)
type: mteb/amazon_massive_scenario
config: fa
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 70.24546065904505
- type: f1
value: 69.07638311730359
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (fi)
type: mteb/amazon_massive_scenario
config: fi
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 69.12911903160726
- type: f1
value: 68.32651736539815
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (fr)
type: mteb/amazon_massive_scenario
config: fr
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 71.89307330195025
- type: f1
value: 71.33986549860187
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (he)
type: mteb/amazon_massive_scenario
config: he
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 67.44451916610626
- type: f1
value: 66.90192664503866
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (hi)
type: mteb/amazon_massive_scenario
config: hi
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 69.16274377942166
- type: f1
value: 68.01090953775066
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (hu)
type: mteb/amazon_massive_scenario
config: hu
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 70.75319435104237
- type: f1
value: 70.18035309201403
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (hy)
type: mteb/amazon_massive_scenario
config: hy
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 63.14391392064559
- type: f1
value: 61.48286540778145
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (id)
type: mteb/amazon_massive_scenario
config: id
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 70.70275722932078
- type: f1
value: 70.26164779846495
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (is)
type: mteb/amazon_massive_scenario
config: is
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 60.93813046402153
- type: f1
value: 58.8852862116525
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (it)
type: mteb/amazon_massive_scenario
config: it
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 72.320107599193
- type: f1
value: 72.19836409602924
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ja)
type: mteb/amazon_massive_scenario
config: ja
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 74.65366509751176
- type: f1
value: 74.55188288799579
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (jv)
type: mteb/amazon_massive_scenario
config: jv
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 59.694014794889036
- type: f1
value: 58.11353311721067
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ka)
type: mteb/amazon_massive_scenario
config: ka
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 54.37457969065231
- type: f1
value: 52.81306134311697
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (km)
type: mteb/amazon_massive_scenario
config: km
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 48.3086751849361
- type: f1
value: 45.396449765419376
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (kn)
type: mteb/amazon_massive_scenario
config: kn
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 62.151983860121064
- type: f1
value: 60.31762544281696
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ko)
type: mteb/amazon_massive_scenario
config: ko
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 72.44788164088769
- type: f1
value: 71.68150151736367
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (lv)
type: mteb/amazon_massive_scenario
config: lv
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 62.81439139206455
- type: f1
value: 62.06735559105593
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ml)
type: mteb/amazon_massive_scenario
config: ml
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 68.04303967720242
- type: f1
value: 66.68298851670133
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (mn)
type: mteb/amazon_massive_scenario
config: mn
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 61.43913920645595
- type: f1
value: 60.25605977560783
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ms)
type: mteb/amazon_massive_scenario
config: ms
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 66.90316072629456
- type: f1
value: 65.1325924692381
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (my)
type: mteb/amazon_massive_scenario
config: my
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 61.63752521856086
- type: f1
value: 59.14284778039585
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (nb)
type: mteb/amazon_massive_scenario
config: nb
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 71.63080026899797
- type: f1
value: 70.89771864626877
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (nl)
type: mteb/amazon_massive_scenario
config: nl
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 72.10827168796234
- type: f1
value: 71.71954219691159
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (pl)
type: mteb/amazon_massive_scenario
config: pl
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 70.59515803631471
- type: f1
value: 70.05040128099003
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (pt)
type: mteb/amazon_massive_scenario
config: pt
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 70.83389374579691
- type: f1
value: 70.84877936562735
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ro)
type: mteb/amazon_massive_scenario
config: ro
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 69.18628110289173
- type: f1
value: 68.97232927921841
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ru)
type: mteb/amazon_massive_scenario
config: ru
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 72.99260255548083
- type: f1
value: 72.85139492157732
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (sl)
type: mteb/amazon_massive_scenario
config: sl
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 65.26227303295225
- type: f1
value: 65.08833655469431
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (sq)
type: mteb/amazon_massive_scenario
config: sq
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 66.48621385339611
- type: f1
value: 64.43483199071298
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (sv)
type: mteb/amazon_massive_scenario
config: sv
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 73.14391392064559
- type: f1
value: 72.2580822579741
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (sw)
type: mteb/amazon_massive_scenario
config: sw
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 59.88567585743107
- type: f1
value: 58.3073765932569
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ta)
type: mteb/amazon_massive_scenario
config: ta
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 62.38399462004034
- type: f1
value: 60.82139544252606
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (te)
type: mteb/amazon_massive_scenario
config: te
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 62.58574310692671
- type: f1
value: 60.71443370385374
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (th)
type: mteb/amazon_massive_scenario
config: th
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 71.61398789509079
- type: f1
value: 70.99761812049401
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (tl)
type: mteb/amazon_massive_scenario
config: tl
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 62.73705447209146
- type: f1
value: 61.680849331794796
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (tr)
type: mteb/amazon_massive_scenario
config: tr
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 71.66778749159381
- type: f1
value: 71.17320646080115
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (ur)
type: mteb/amazon_massive_scenario
config: ur
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 64.640215198386
- type: f1
value: 63.301805157015444
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (vi)
type: mteb/amazon_massive_scenario
config: vi
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 70.00672494956288
- type: f1
value: 70.26005548582106
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (zh-CN)
type: mteb/amazon_massive_scenario
config: zh-CN
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 75.42030934767989
- type: f1
value: 75.2074842882598
- task:
type: Classification
dataset:
name: MTEB MassiveScenarioClassification (zh-TW)
type: mteb/amazon_massive_scenario
config: zh-TW
split: test
revision: 7d571f92784cd94a019292a1f45445077d0ef634
metrics:
- type: accuracy
value: 70.69266980497646
- type: f1
value: 70.94103167391192
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringP2P
type: mteb/medrxiv-clustering-p2p
config: default
split: test
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
metrics:
- type: v_measure
value: 28.91697191169135
- task:
type: Clustering
dataset:
name: MTEB MedrxivClusteringS2S
type: mteb/medrxiv-clustering-s2s
config: default
split: test
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
metrics:
- type: v_measure
value: 28.434000079573313
- task:
type: Reranking
dataset:
name: MTEB MindSmallReranking
type: mteb/mind_small
config: default
split: test
revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
metrics:
- type: map
value: 30.96683513343383
- type: mrr
value: 31.967364078714834
- task:
type: Retrieval
dataset:
name: MTEB NFCorpus
type: nfcorpus
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 5.5280000000000005
- type: map_at_10
value: 11.793
- type: map_at_100
value: 14.496999999999998
- type: map_at_1000
value: 15.783
- type: map_at_3
value: 8.838
- type: map_at_5
value: 10.07
- type: mrr_at_1
value: 43.653
- type: mrr_at_10
value: 51.531000000000006
- type: mrr_at_100
value: 52.205
- type: mrr_at_1000
value: 52.242999999999995
- type: mrr_at_3
value: 49.431999999999995
- type: mrr_at_5
value: 50.470000000000006
- type: ndcg_at_1
value: 42.415000000000006
- type: ndcg_at_10
value: 32.464999999999996
- type: ndcg_at_100
value: 28.927999999999997
- type: ndcg_at_1000
value: 37.629000000000005
- type: ndcg_at_3
value: 37.845
- type: ndcg_at_5
value: 35.147
- type: precision_at_1
value: 43.653
- type: precision_at_10
value: 23.932000000000002
- type: precision_at_100
value: 7.17
- type: precision_at_1000
value: 1.967
- type: precision_at_3
value: 35.397
- type: precision_at_5
value: 29.907
- type: recall_at_1
value: 5.5280000000000005
- type: recall_at_10
value: 15.568000000000001
- type: recall_at_100
value: 28.54
- type: recall_at_1000
value: 59.864
- type: recall_at_3
value: 9.822000000000001
- type: recall_at_5
value: 11.726
- task:
type: Retrieval
dataset:
name: MTEB NQ
type: nq
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 37.041000000000004
- type: map_at_10
value: 52.664
- type: map_at_100
value: 53.477
- type: map_at_1000
value: 53.505
- type: map_at_3
value: 48.510999999999996
- type: map_at_5
value: 51.036
- type: mrr_at_1
value: 41.338
- type: mrr_at_10
value: 55.071000000000005
- type: mrr_at_100
value: 55.672
- type: mrr_at_1000
value: 55.689
- type: mrr_at_3
value: 51.82
- type: mrr_at_5
value: 53.852
- type: ndcg_at_1
value: 41.338
- type: ndcg_at_10
value: 60.01800000000001
- type: ndcg_at_100
value: 63.409000000000006
- type: ndcg_at_1000
value: 64.017
- type: ndcg_at_3
value: 52.44799999999999
- type: ndcg_at_5
value: 56.571000000000005
- type: precision_at_1
value: 41.338
- type: precision_at_10
value: 9.531
- type: precision_at_100
value: 1.145
- type: precision_at_1000
value: 0.12
- type: precision_at_3
value: 23.416
- type: precision_at_5
value: 16.46
- type: recall_at_1
value: 37.041000000000004
- type: recall_at_10
value: 79.76299999999999
- type: recall_at_100
value: 94.39
- type: recall_at_1000
value: 98.851
- type: recall_at_3
value: 60.465
- type: recall_at_5
value: 69.906
- task:
type: Retrieval
dataset:
name: MTEB QuoraRetrieval
type: quora
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 69.952
- type: map_at_10
value: 83.758
- type: map_at_100
value: 84.406
- type: map_at_1000
value: 84.425
- type: map_at_3
value: 80.839
- type: map_at_5
value: 82.646
- type: mrr_at_1
value: 80.62
- type: mrr_at_10
value: 86.947
- type: mrr_at_100
value: 87.063
- type: mrr_at_1000
value: 87.064
- type: mrr_at_3
value: 85.96000000000001
- type: mrr_at_5
value: 86.619
- type: ndcg_at_1
value: 80.63
- type: ndcg_at_10
value: 87.64800000000001
- type: ndcg_at_100
value: 88.929
- type: ndcg_at_1000
value: 89.054
- type: ndcg_at_3
value: 84.765
- type: ndcg_at_5
value: 86.291
- type: precision_at_1
value: 80.63
- type: precision_at_10
value: 13.314
- type: precision_at_100
value: 1.525
- type: precision_at_1000
value: 0.157
- type: precision_at_3
value: 37.1
- type: precision_at_5
value: 24.372
- type: recall_at_1
value: 69.952
- type: recall_at_10
value: 94.955
- type: recall_at_100
value: 99.38
- type: recall_at_1000
value: 99.96000000000001
- type: recall_at_3
value: 86.60600000000001
- type: recall_at_5
value: 90.997
- task:
type: Clustering
dataset:
name: MTEB RedditClustering
type: mteb/reddit-clustering
config: default
split: test
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
metrics:
- type: v_measure
value: 42.41329517878427
- task:
type: Clustering
dataset:
name: MTEB RedditClusteringP2P
type: mteb/reddit-clustering-p2p
config: default
split: test
revision: 282350215ef01743dc01b456c7f5241fa8937f16
metrics:
- type: v_measure
value: 55.171278362748666
- task:
type: Retrieval
dataset:
name: MTEB SCIDOCS
type: scidocs
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 4.213
- type: map_at_10
value: 9.895
- type: map_at_100
value: 11.776
- type: map_at_1000
value: 12.084
- type: map_at_3
value: 7.2669999999999995
- type: map_at_5
value: 8.620999999999999
- type: mrr_at_1
value: 20.8
- type: mrr_at_10
value: 31.112000000000002
- type: mrr_at_100
value: 32.274
- type: mrr_at_1000
value: 32.35
- type: mrr_at_3
value: 28.133000000000003
- type: mrr_at_5
value: 29.892999999999997
- type: ndcg_at_1
value: 20.8
- type: ndcg_at_10
value: 17.163999999999998
- type: ndcg_at_100
value: 24.738
- type: ndcg_at_1000
value: 30.316
- type: ndcg_at_3
value: 16.665
- type: ndcg_at_5
value: 14.478
- type: precision_at_1
value: 20.8
- type: precision_at_10
value: 8.74
- type: precision_at_100
value: 1.963
- type: precision_at_1000
value: 0.33
- type: precision_at_3
value: 15.467
- type: precision_at_5
value: 12.6
- type: recall_at_1
value: 4.213
- type: recall_at_10
value: 17.698
- type: recall_at_100
value: 39.838
- type: recall_at_1000
value: 66.893
- type: recall_at_3
value: 9.418
- type: recall_at_5
value: 12.773000000000001
- task:
type: STS
dataset:
name: MTEB SICK-R
type: mteb/sickr-sts
config: default
split: test
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
metrics:
- type: cos_sim_pearson
value: 82.90453315738294
- type: cos_sim_spearman
value: 78.51197850080254
- type: euclidean_pearson
value: 80.09647123597748
- type: euclidean_spearman
value: 78.63548011514061
- type: manhattan_pearson
value: 80.10645285675231
- type: manhattan_spearman
value: 78.57861806068901
- task:
type: STS
dataset:
name: MTEB STS12
type: mteb/sts12-sts
config: default
split: test
revision: a0d554a64d88156834ff5ae9920b964011b16384
metrics:
- type: cos_sim_pearson
value: 84.2616156846401
- type: cos_sim_spearman
value: 76.69713867850156
- type: euclidean_pearson
value: 77.97948563800394
- type: euclidean_spearman
value: 74.2371211567807
- type: manhattan_pearson
value: 77.69697879669705
- type: manhattan_spearman
value: 73.86529778022278
- task:
type: STS
dataset:
name: MTEB STS13
type: mteb/sts13-sts
config: default
split: test
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
metrics:
- type: cos_sim_pearson
value: 77.0293269315045
- type: cos_sim_spearman
value: 78.02555120584198
- type: euclidean_pearson
value: 78.25398100379078
- type: euclidean_spearman
value: 78.66963870599464
- type: manhattan_pearson
value: 78.14314682167348
- type: manhattan_spearman
value: 78.57692322969135
- task:
type: STS
dataset:
name: MTEB STS14
type: mteb/sts14-sts
config: default
split: test
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
metrics:
- type: cos_sim_pearson
value: 79.16989925136942
- type: cos_sim_spearman
value: 76.5996225327091
- type: euclidean_pearson
value: 77.8319003279786
- type: euclidean_spearman
value: 76.42824009468998
- type: manhattan_pearson
value: 77.69118862737736
- type: manhattan_spearman
value: 76.25568104762812
- task:
type: STS
dataset:
name: MTEB STS15
type: mteb/sts15-sts
config: default
split: test
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
metrics:
- type: cos_sim_pearson
value: 87.42012286935325
- type: cos_sim_spearman
value: 88.15654297884122
- type: euclidean_pearson
value: 87.34082819427852
- type: euclidean_spearman
value: 88.06333589547084
- type: manhattan_pearson
value: 87.25115596784842
- type: manhattan_spearman
value: 87.9559927695203
- task:
type: STS
dataset:
name: MTEB STS16
type: mteb/sts16-sts
config: default
split: test
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
metrics:
- type: cos_sim_pearson
value: 82.88222044996712
- type: cos_sim_spearman
value: 84.28476589061077
- type: euclidean_pearson
value: 83.17399758058309
- type: euclidean_spearman
value: 83.85497357244542
- type: manhattan_pearson
value: 83.0308397703786
- type: manhattan_spearman
value: 83.71554539935046
- task:
type: STS
dataset:
name: MTEB STS17 (ko-ko)
type: mteb/sts17-crosslingual-sts
config: ko-ko
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 80.20682986257339
- type: cos_sim_spearman
value: 79.94567120362092
- type: euclidean_pearson
value: 79.43122480368902
- type: euclidean_spearman
value: 79.94802077264987
- type: manhattan_pearson
value: 79.32653021527081
- type: manhattan_spearman
value: 79.80961146709178
- task:
type: STS
dataset:
name: MTEB STS17 (ar-ar)
type: mteb/sts17-crosslingual-sts
config: ar-ar
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 74.46578144394383
- type: cos_sim_spearman
value: 74.52496637472179
- type: euclidean_pearson
value: 72.2903807076809
- type: euclidean_spearman
value: 73.55549359771645
- type: manhattan_pearson
value: 72.09324837709393
- type: manhattan_spearman
value: 73.36743103606581
- task:
type: STS
dataset:
name: MTEB STS17 (en-ar)
type: mteb/sts17-crosslingual-sts
config: en-ar
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 71.37272335116
- type: cos_sim_spearman
value: 71.26702117766037
- type: euclidean_pearson
value: 67.114829954434
- type: euclidean_spearman
value: 66.37938893947761
- type: manhattan_pearson
value: 66.79688574095246
- type: manhattan_spearman
value: 66.17292828079667
- task:
type: STS
dataset:
name: MTEB STS17 (en-de)
type: mteb/sts17-crosslingual-sts
config: en-de
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 80.61016770129092
- type: cos_sim_spearman
value: 82.08515426632214
- type: euclidean_pearson
value: 80.557340361131
- type: euclidean_spearman
value: 80.37585812266175
- type: manhattan_pearson
value: 80.6782873404285
- type: manhattan_spearman
value: 80.6678073032024
- task:
type: STS
dataset:
name: MTEB STS17 (en-en)
type: mteb/sts17-crosslingual-sts
config: en-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 87.00150745350108
- type: cos_sim_spearman
value: 87.83441972211425
- type: euclidean_pearson
value: 87.94826702308792
- type: euclidean_spearman
value: 87.46143974860725
- type: manhattan_pearson
value: 87.97560344306105
- type: manhattan_spearman
value: 87.5267102829796
- task:
type: STS
dataset:
name: MTEB STS17 (en-tr)
type: mteb/sts17-crosslingual-sts
config: en-tr
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 64.76325252267235
- type: cos_sim_spearman
value: 63.32615095463905
- type: euclidean_pearson
value: 64.07920669155716
- type: euclidean_spearman
value: 61.21409893072176
- type: manhattan_pearson
value: 64.26308625680016
- type: manhattan_spearman
value: 61.2438185254079
- task:
type: STS
dataset:
name: MTEB STS17 (es-en)
type: mteb/sts17-crosslingual-sts
config: es-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 75.82644463022595
- type: cos_sim_spearman
value: 76.50381269945073
- type: euclidean_pearson
value: 75.1328548315934
- type: euclidean_spearman
value: 75.63761139408453
- type: manhattan_pearson
value: 75.18610101241407
- type: manhattan_spearman
value: 75.30669266354164
- task:
type: STS
dataset:
name: MTEB STS17 (es-es)
type: mteb/sts17-crosslingual-sts
config: es-es
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 87.49994164686832
- type: cos_sim_spearman
value: 86.73743986245549
- type: euclidean_pearson
value: 86.8272894387145
- type: euclidean_spearman
value: 85.97608491000507
- type: manhattan_pearson
value: 86.74960140396779
- type: manhattan_spearman
value: 85.79285984190273
- task:
type: STS
dataset:
name: MTEB STS17 (fr-en)
type: mteb/sts17-crosslingual-sts
config: fr-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 79.58172210788469
- type: cos_sim_spearman
value: 80.17516468334607
- type: euclidean_pearson
value: 77.56537843470504
- type: euclidean_spearman
value: 77.57264627395521
- type: manhattan_pearson
value: 78.09703521695943
- type: manhattan_spearman
value: 78.15942760916954
- task:
type: STS
dataset:
name: MTEB STS17 (it-en)
type: mteb/sts17-crosslingual-sts
config: it-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 79.7589932931751
- type: cos_sim_spearman
value: 80.15210089028162
- type: euclidean_pearson
value: 77.54135223516057
- type: euclidean_spearman
value: 77.52697996368764
- type: manhattan_pearson
value: 77.65734439572518
- type: manhattan_spearman
value: 77.77702992016121
- task:
type: STS
dataset:
name: MTEB STS17 (nl-en)
type: mteb/sts17-crosslingual-sts
config: nl-en
split: test
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
metrics:
- type: cos_sim_pearson
value: 79.16682365511267
- type: cos_sim_spearman
value: 79.25311267628506
- type: euclidean_pearson
value: 77.54882036762244
- type: euclidean_spearman
value: 77.33212935194827
- type: manhattan_pearson
value: 77.98405516064015
- type: manhattan_spearman
value: 77.85075717865719
- task:
type: STS
dataset:
name: MTEB STS22 (en)
type: mteb/sts22-crosslingual-sts
config: en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 59.10473294775917
- type: cos_sim_spearman
value: 61.82780474476838
- type: euclidean_pearson
value: 45.885111672377256
- type: euclidean_spearman
value: 56.88306351932454
- type: manhattan_pearson
value: 46.101218127323186
- type: manhattan_spearman
value: 56.80953694186333
- task:
type: STS
dataset:
name: MTEB STS22 (de)
type: mteb/sts22-crosslingual-sts
config: de
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 45.781923079584146
- type: cos_sim_spearman
value: 55.95098449691107
- type: euclidean_pearson
value: 25.4571031323205
- type: euclidean_spearman
value: 49.859978118078935
- type: manhattan_pearson
value: 25.624938455041384
- type: manhattan_spearman
value: 49.99546185049401
- task:
type: STS
dataset:
name: MTEB STS22 (es)
type: mteb/sts22-crosslingual-sts
config: es
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 60.00618133997907
- type: cos_sim_spearman
value: 66.57896677718321
- type: euclidean_pearson
value: 42.60118466388821
- type: euclidean_spearman
value: 62.8210759715209
- type: manhattan_pearson
value: 42.63446860604094
- type: manhattan_spearman
value: 62.73803068925271
- task:
type: STS
dataset:
name: MTEB STS22 (pl)
type: mteb/sts22-crosslingual-sts
config: pl
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 28.460759121626943
- type: cos_sim_spearman
value: 34.13459007469131
- type: euclidean_pearson
value: 6.0917739325525195
- type: euclidean_spearman
value: 27.9947262664867
- type: manhattan_pearson
value: 6.16877864169911
- type: manhattan_spearman
value: 28.00664163971514
- task:
type: STS
dataset:
name: MTEB STS22 (tr)
type: mteb/sts22-crosslingual-sts
config: tr
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 57.42546621771696
- type: cos_sim_spearman
value: 63.699663168970474
- type: euclidean_pearson
value: 38.12085278789738
- type: euclidean_spearman
value: 58.12329140741536
- type: manhattan_pearson
value: 37.97364549443335
- type: manhattan_spearman
value: 57.81545502318733
- task:
type: STS
dataset:
name: MTEB STS22 (ar)
type: mteb/sts22-crosslingual-sts
config: ar
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 46.82241380954213
- type: cos_sim_spearman
value: 57.86569456006391
- type: euclidean_pearson
value: 31.80480070178813
- type: euclidean_spearman
value: 52.484000620130104
- type: manhattan_pearson
value: 31.952708554646097
- type: manhattan_spearman
value: 52.8560972356195
- task:
type: STS
dataset:
name: MTEB STS22 (ru)
type: mteb/sts22-crosslingual-sts
config: ru
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 52.00447170498087
- type: cos_sim_spearman
value: 60.664116225735164
- type: euclidean_pearson
value: 33.87382555421702
- type: euclidean_spearman
value: 55.74649067458667
- type: manhattan_pearson
value: 33.99117246759437
- type: manhattan_spearman
value: 55.98749034923899
- task:
type: STS
dataset:
name: MTEB STS22 (zh)
type: mteb/sts22-crosslingual-sts
config: zh
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 58.06497233105448
- type: cos_sim_spearman
value: 65.62968801135676
- type: euclidean_pearson
value: 47.482076613243905
- type: euclidean_spearman
value: 62.65137791498299
- type: manhattan_pearson
value: 47.57052626104093
- type: manhattan_spearman
value: 62.436916516613294
- task:
type: STS
dataset:
name: MTEB STS22 (fr)
type: mteb/sts22-crosslingual-sts
config: fr
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 70.49397298562575
- type: cos_sim_spearman
value: 74.79604041187868
- type: euclidean_pearson
value: 49.661891561317795
- type: euclidean_spearman
value: 70.31535537621006
- type: manhattan_pearson
value: 49.553715741850006
- type: manhattan_spearman
value: 70.24779344636806
- task:
type: STS
dataset:
name: MTEB STS22 (de-en)
type: mteb/sts22-crosslingual-sts
config: de-en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 55.640574515348696
- type: cos_sim_spearman
value: 54.927959317689
- type: euclidean_pearson
value: 29.00139666967476
- type: euclidean_spearman
value: 41.86386566971605
- type: manhattan_pearson
value: 29.47411067730344
- type: manhattan_spearman
value: 42.337438424952786
- task:
type: STS
dataset:
name: MTEB STS22 (es-en)
type: mteb/sts22-crosslingual-sts
config: es-en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 68.14095292259312
- type: cos_sim_spearman
value: 73.99017581234789
- type: euclidean_pearson
value: 46.46304297872084
- type: euclidean_spearman
value: 60.91834114800041
- type: manhattan_pearson
value: 47.07072666338692
- type: manhattan_spearman
value: 61.70415727977926
- task:
type: STS
dataset:
name: MTEB STS22 (it)
type: mteb/sts22-crosslingual-sts
config: it
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 73.27184653359575
- type: cos_sim_spearman
value: 77.76070252418626
- type: euclidean_pearson
value: 62.30586577544778
- type: euclidean_spearman
value: 75.14246629110978
- type: manhattan_pearson
value: 62.328196884927046
- type: manhattan_spearman
value: 75.1282792981433
- task:
type: STS
dataset:
name: MTEB STS22 (pl-en)
type: mteb/sts22-crosslingual-sts
config: pl-en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 71.59448528829957
- type: cos_sim_spearman
value: 70.37277734222123
- type: euclidean_pearson
value: 57.63145565721123
- type: euclidean_spearman
value: 66.10113048304427
- type: manhattan_pearson
value: 57.18897811586808
- type: manhattan_spearman
value: 66.5595511215901
- task:
type: STS
dataset:
name: MTEB STS22 (zh-en)
type: mteb/sts22-crosslingual-sts
config: zh-en
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 66.37520607720838
- type: cos_sim_spearman
value: 69.92282148997948
- type: euclidean_pearson
value: 40.55768770125291
- type: euclidean_spearman
value: 55.189128944669605
- type: manhattan_pearson
value: 41.03566433468883
- type: manhattan_spearman
value: 55.61251893174558
- task:
type: STS
dataset:
name: MTEB STS22 (es-it)
type: mteb/sts22-crosslingual-sts
config: es-it
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 57.791929533771835
- type: cos_sim_spearman
value: 66.45819707662093
- type: euclidean_pearson
value: 39.03686018511092
- type: euclidean_spearman
value: 56.01282695640428
- type: manhattan_pearson
value: 38.91586623619632
- type: manhattan_spearman
value: 56.69394943612747
- task:
type: STS
dataset:
name: MTEB STS22 (de-fr)
type: mteb/sts22-crosslingual-sts
config: de-fr
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 47.82224468473866
- type: cos_sim_spearman
value: 59.467307194781164
- type: euclidean_pearson
value: 27.428459190256145
- type: euclidean_spearman
value: 60.83463107397519
- type: manhattan_pearson
value: 27.487391578496638
- type: manhattan_spearman
value: 61.281380460246496
- task:
type: STS
dataset:
name: MTEB STS22 (de-pl)
type: mteb/sts22-crosslingual-sts
config: de-pl
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 16.306666792752644
- type: cos_sim_spearman
value: 39.35486427252405
- type: euclidean_pearson
value: -2.7887154897955435
- type: euclidean_spearman
value: 27.1296051831719
- type: manhattan_pearson
value: -3.202291270581297
- type: manhattan_spearman
value: 26.32895849218158
- task:
type: STS
dataset:
name: MTEB STS22 (fr-pl)
type: mteb/sts22-crosslingual-sts
config: fr-pl
split: test
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
metrics:
- type: cos_sim_pearson
value: 59.67006803805076
- type: cos_sim_spearman
value: 73.24670207647144
- type: euclidean_pearson
value: 46.91884681500483
- type: euclidean_spearman
value: 16.903085094570333
- type: manhattan_pearson
value: 46.88391675325812
- type: manhattan_spearman
value: 28.17180849095055
- task:
type: STS
dataset:
name: MTEB STSBenchmark
type: mteb/stsbenchmark-sts
config: default
split: test
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
metrics:
- type: cos_sim_pearson
value: 83.79555591223837
- type: cos_sim_spearman
value: 85.63658602085185
- type: euclidean_pearson
value: 85.22080894037671
- type: euclidean_spearman
value: 85.54113580167038
- type: manhattan_pearson
value: 85.1639505960118
- type: manhattan_spearman
value: 85.43502665436196
- task:
type: Reranking
dataset:
name: MTEB SciDocsRR
type: mteb/scidocs-reranking
config: default
split: test
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
metrics:
- type: map
value: 80.73900991689766
- type: mrr
value: 94.81624131133934
- task:
type: Retrieval
dataset:
name: MTEB SciFact
type: scifact
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 55.678000000000004
- type: map_at_10
value: 65.135
- type: map_at_100
value: 65.824
- type: map_at_1000
value: 65.852
- type: map_at_3
value: 62.736000000000004
- type: map_at_5
value: 64.411
- type: mrr_at_1
value: 58.333
- type: mrr_at_10
value: 66.5
- type: mrr_at_100
value: 67.053
- type: mrr_at_1000
value: 67.08
- type: mrr_at_3
value: 64.944
- type: mrr_at_5
value: 65.89399999999999
- type: ndcg_at_1
value: 58.333
- type: ndcg_at_10
value: 69.34700000000001
- type: ndcg_at_100
value: 72.32
- type: ndcg_at_1000
value: 73.014
- type: ndcg_at_3
value: 65.578
- type: ndcg_at_5
value: 67.738
- type: precision_at_1
value: 58.333
- type: precision_at_10
value: 9.033
- type: precision_at_100
value: 1.0670000000000002
- type: precision_at_1000
value: 0.11199999999999999
- type: precision_at_3
value: 25.444
- type: precision_at_5
value: 16.933
- type: recall_at_1
value: 55.678000000000004
- type: recall_at_10
value: 80.72200000000001
- type: recall_at_100
value: 93.93299999999999
- type: recall_at_1000
value: 99.333
- type: recall_at_3
value: 70.783
- type: recall_at_5
value: 75.978
- task:
type: PairClassification
dataset:
name: MTEB SprintDuplicateQuestions
type: mteb/sprintduplicatequestions-pairclassification
config: default
split: test
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
metrics:
- type: cos_sim_accuracy
value: 99.74653465346535
- type: cos_sim_ap
value: 93.01476369929063
- type: cos_sim_f1
value: 86.93009118541033
- type: cos_sim_precision
value: 88.09034907597535
- type: cos_sim_recall
value: 85.8
- type: dot_accuracy
value: 99.22970297029703
- type: dot_ap
value: 51.58725659485144
- type: dot_f1
value: 53.51351351351352
- type: dot_precision
value: 58.235294117647065
- type: dot_recall
value: 49.5
- type: euclidean_accuracy
value: 99.74356435643564
- type: euclidean_ap
value: 92.40332894384368
- type: euclidean_f1
value: 86.97838109602817
- type: euclidean_precision
value: 87.46208291203236
- type: euclidean_recall
value: 86.5
- type: manhattan_accuracy
value: 99.73069306930694
- type: manhattan_ap
value: 92.01320815721121
- type: manhattan_f1
value: 86.4135864135864
- type: manhattan_precision
value: 86.32734530938124
- type: manhattan_recall
value: 86.5
- type: max_accuracy
value: 99.74653465346535
- type: max_ap
value: 93.01476369929063
- type: max_f1
value: 86.97838109602817
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClustering
type: mteb/stackexchange-clustering
config: default
split: test
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
metrics:
- type: v_measure
value: 55.2660514302523
- task:
type: Clustering
dataset:
name: MTEB StackExchangeClusteringP2P
type: mteb/stackexchange-clustering-p2p
config: default
split: test
revision: 815ca46b2622cec33ccafc3735d572c266efdb44
metrics:
- type: v_measure
value: 30.4637783572547
- task:
type: Reranking
dataset:
name: MTEB StackOverflowDupQuestions
type: mteb/stackoverflowdupquestions-reranking
config: default
split: test
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
metrics:
- type: map
value: 49.41377758357637
- type: mrr
value: 50.138451213818854
- task:
type: Summarization
dataset:
name: MTEB SummEval
type: mteb/summeval
config: default
split: test
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
metrics:
- type: cos_sim_pearson
value: 28.887846011166594
- type: cos_sim_spearman
value: 30.10823258355903
- type: dot_pearson
value: 12.888049550236385
- type: dot_spearman
value: 12.827495903098123
- task:
type: Retrieval
dataset:
name: MTEB TRECCOVID
type: trec-covid
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 0.21
- type: map_at_10
value: 1.667
- type: map_at_100
value: 9.15
- type: map_at_1000
value: 22.927
- type: map_at_3
value: 0.573
- type: map_at_5
value: 0.915
- type: mrr_at_1
value: 80
- type: mrr_at_10
value: 87.167
- type: mrr_at_100
value: 87.167
- type: mrr_at_1000
value: 87.167
- type: mrr_at_3
value: 85.667
- type: mrr_at_5
value: 87.167
- type: ndcg_at_1
value: 76
- type: ndcg_at_10
value: 69.757
- type: ndcg_at_100
value: 52.402
- type: ndcg_at_1000
value: 47.737
- type: ndcg_at_3
value: 71.866
- type: ndcg_at_5
value: 72.225
- type: precision_at_1
value: 80
- type: precision_at_10
value: 75
- type: precision_at_100
value: 53.959999999999994
- type: precision_at_1000
value: 21.568
- type: precision_at_3
value: 76.667
- type: precision_at_5
value: 78
- type: recall_at_1
value: 0.21
- type: recall_at_10
value: 1.9189999999999998
- type: recall_at_100
value: 12.589
- type: recall_at_1000
value: 45.312000000000005
- type: recall_at_3
value: 0.61
- type: recall_at_5
value: 1.019
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (sqi-eng)
type: mteb/tatoeba-bitext-mining
config: sqi-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 92.10000000000001
- type: f1
value: 90.06
- type: precision
value: 89.17333333333333
- type: recall
value: 92.10000000000001
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (fry-eng)
type: mteb/tatoeba-bitext-mining
config: fry-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 56.06936416184971
- type: f1
value: 50.87508028259473
- type: precision
value: 48.97398843930635
- type: recall
value: 56.06936416184971
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (kur-eng)
type: mteb/tatoeba-bitext-mining
config: kur-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 57.3170731707317
- type: f1
value: 52.96080139372822
- type: precision
value: 51.67861124382864
- type: recall
value: 57.3170731707317
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (tur-eng)
type: mteb/tatoeba-bitext-mining
config: tur-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 94.3
- type: f1
value: 92.67333333333333
- type: precision
value: 91.90833333333333
- type: recall
value: 94.3
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (deu-eng)
type: mteb/tatoeba-bitext-mining
config: deu-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.7
- type: f1
value: 97.07333333333332
- type: precision
value: 96.79500000000002
- type: recall
value: 97.7
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (nld-eng)
type: mteb/tatoeba-bitext-mining
config: nld-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 94.69999999999999
- type: f1
value: 93.2
- type: precision
value: 92.48333333333333
- type: recall
value: 94.69999999999999
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ron-eng)
type: mteb/tatoeba-bitext-mining
config: ron-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 92.9
- type: f1
value: 91.26666666666667
- type: precision
value: 90.59444444444445
- type: recall
value: 92.9
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ang-eng)
type: mteb/tatoeba-bitext-mining
config: ang-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 34.32835820895522
- type: f1
value: 29.074180380150533
- type: precision
value: 28.068207322920596
- type: recall
value: 34.32835820895522
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ido-eng)
type: mteb/tatoeba-bitext-mining
config: ido-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 78.5
- type: f1
value: 74.3945115995116
- type: precision
value: 72.82967843459222
- type: recall
value: 78.5
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (jav-eng)
type: mteb/tatoeba-bitext-mining
config: jav-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 66.34146341463415
- type: f1
value: 61.2469400518181
- type: precision
value: 59.63977756660683
- type: recall
value: 66.34146341463415
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (isl-eng)
type: mteb/tatoeba-bitext-mining
config: isl-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 80.9
- type: f1
value: 76.90349206349207
- type: precision
value: 75.32921568627451
- type: recall
value: 80.9
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (slv-eng)
type: mteb/tatoeba-bitext-mining
config: slv-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 84.93317132442284
- type: f1
value: 81.92519105034295
- type: precision
value: 80.71283920615635
- type: recall
value: 84.93317132442284
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (cym-eng)
type: mteb/tatoeba-bitext-mining
config: cym-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 71.1304347826087
- type: f1
value: 65.22394755003451
- type: precision
value: 62.912422360248435
- type: recall
value: 71.1304347826087
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (kaz-eng)
type: mteb/tatoeba-bitext-mining
config: kaz-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 79.82608695652173
- type: f1
value: 75.55693581780538
- type: precision
value: 73.79420289855072
- type: recall
value: 79.82608695652173
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (est-eng)
type: mteb/tatoeba-bitext-mining
config: est-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 74
- type: f1
value: 70.51022222222223
- type: precision
value: 69.29673599347512
- type: recall
value: 74
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (heb-eng)
type: mteb/tatoeba-bitext-mining
config: heb-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 78.7
- type: f1
value: 74.14238095238095
- type: precision
value: 72.27214285714285
- type: recall
value: 78.7
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (gla-eng)
type: mteb/tatoeba-bitext-mining
config: gla-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 48.97466827503016
- type: f1
value: 43.080330405420874
- type: precision
value: 41.36505499593557
- type: recall
value: 48.97466827503016
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (mar-eng)
type: mteb/tatoeba-bitext-mining
config: mar-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 89.60000000000001
- type: f1
value: 86.62333333333333
- type: precision
value: 85.225
- type: recall
value: 89.60000000000001
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (lat-eng)
type: mteb/tatoeba-bitext-mining
config: lat-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 45.2
- type: f1
value: 39.5761253006253
- type: precision
value: 37.991358436312
- type: recall
value: 45.2
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (bel-eng)
type: mteb/tatoeba-bitext-mining
config: bel-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 89.5
- type: f1
value: 86.70333333333333
- type: precision
value: 85.53166666666667
- type: recall
value: 89.5
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (pms-eng)
type: mteb/tatoeba-bitext-mining
config: pms-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 50.095238095238095
- type: f1
value: 44.60650460650461
- type: precision
value: 42.774116796477045
- type: recall
value: 50.095238095238095
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (gle-eng)
type: mteb/tatoeba-bitext-mining
config: gle-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 63.4
- type: f1
value: 58.35967261904762
- type: precision
value: 56.54857142857143
- type: recall
value: 63.4
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (pes-eng)
type: mteb/tatoeba-bitext-mining
config: pes-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 89.2
- type: f1
value: 87.075
- type: precision
value: 86.12095238095239
- type: recall
value: 89.2
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (nob-eng)
type: mteb/tatoeba-bitext-mining
config: nob-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96.8
- type: f1
value: 95.90333333333334
- type: precision
value: 95.50833333333333
- type: recall
value: 96.8
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (bul-eng)
type: mteb/tatoeba-bitext-mining
config: bul-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 90.9
- type: f1
value: 88.6288888888889
- type: precision
value: 87.61607142857142
- type: recall
value: 90.9
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (cbk-eng)
type: mteb/tatoeba-bitext-mining
config: cbk-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 65.2
- type: f1
value: 60.54377630539395
- type: precision
value: 58.89434482711381
- type: recall
value: 65.2
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (hun-eng)
type: mteb/tatoeba-bitext-mining
config: hun-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 87
- type: f1
value: 84.32412698412699
- type: precision
value: 83.25527777777778
- type: recall
value: 87
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (uig-eng)
type: mteb/tatoeba-bitext-mining
config: uig-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 68.7
- type: f1
value: 63.07883541295306
- type: precision
value: 61.06117424242426
- type: recall
value: 68.7
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (rus-eng)
type: mteb/tatoeba-bitext-mining
config: rus-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 93.7
- type: f1
value: 91.78333333333335
- type: precision
value: 90.86666666666667
- type: recall
value: 93.7
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (spa-eng)
type: mteb/tatoeba-bitext-mining
config: spa-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.7
- type: f1
value: 96.96666666666667
- type: precision
value: 96.61666666666667
- type: recall
value: 97.7
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (hye-eng)
type: mteb/tatoeba-bitext-mining
config: hye-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 88.27493261455525
- type: f1
value: 85.90745732255168
- type: precision
value: 84.91389637616052
- type: recall
value: 88.27493261455525
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (tel-eng)
type: mteb/tatoeba-bitext-mining
config: tel-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 90.5982905982906
- type: f1
value: 88.4900284900285
- type: precision
value: 87.57122507122507
- type: recall
value: 90.5982905982906
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (afr-eng)
type: mteb/tatoeba-bitext-mining
config: afr-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 89.5
- type: f1
value: 86.90769841269842
- type: precision
value: 85.80178571428571
- type: recall
value: 89.5
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (mon-eng)
type: mteb/tatoeba-bitext-mining
config: mon-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 82.5
- type: f1
value: 78.36796536796538
- type: precision
value: 76.82196969696969
- type: recall
value: 82.5
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (arz-eng)
type: mteb/tatoeba-bitext-mining
config: arz-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 71.48846960167715
- type: f1
value: 66.78771089148448
- type: precision
value: 64.98302885095339
- type: recall
value: 71.48846960167715
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (hrv-eng)
type: mteb/tatoeba-bitext-mining
config: hrv-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 94.1
- type: f1
value: 92.50333333333333
- type: precision
value: 91.77499999999999
- type: recall
value: 94.1
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (nov-eng)
type: mteb/tatoeba-bitext-mining
config: nov-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 71.20622568093385
- type: f1
value: 66.83278891450098
- type: precision
value: 65.35065777283677
- type: recall
value: 71.20622568093385
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (gsw-eng)
type: mteb/tatoeba-bitext-mining
config: gsw-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 48.717948717948715
- type: f1
value: 43.53146853146853
- type: precision
value: 42.04721204721204
- type: recall
value: 48.717948717948715
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (nds-eng)
type: mteb/tatoeba-bitext-mining
config: nds-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 58.5
- type: f1
value: 53.8564991863928
- type: precision
value: 52.40329436122275
- type: recall
value: 58.5
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ukr-eng)
type: mteb/tatoeba-bitext-mining
config: ukr-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 90.8
- type: f1
value: 88.29
- type: precision
value: 87.09166666666667
- type: recall
value: 90.8
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (uzb-eng)
type: mteb/tatoeba-bitext-mining
config: uzb-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 67.28971962616822
- type: f1
value: 62.63425307817832
- type: precision
value: 60.98065939771546
- type: recall
value: 67.28971962616822
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (lit-eng)
type: mteb/tatoeba-bitext-mining
config: lit-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 78.7
- type: f1
value: 75.5264472455649
- type: precision
value: 74.38205086580086
- type: recall
value: 78.7
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ina-eng)
type: mteb/tatoeba-bitext-mining
config: ina-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 88.7
- type: f1
value: 86.10809523809525
- type: precision
value: 85.07602564102565
- type: recall
value: 88.7
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (lfn-eng)
type: mteb/tatoeba-bitext-mining
config: lfn-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 56.99999999999999
- type: f1
value: 52.85487521402737
- type: precision
value: 51.53985162713104
- type: recall
value: 56.99999999999999
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (zsm-eng)
type: mteb/tatoeba-bitext-mining
config: zsm-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 94
- type: f1
value: 92.45333333333333
- type: precision
value: 91.79166666666667
- type: recall
value: 94
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ita-eng)
type: mteb/tatoeba-bitext-mining
config: ita-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 92.30000000000001
- type: f1
value: 90.61333333333333
- type: precision
value: 89.83333333333331
- type: recall
value: 92.30000000000001
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (cmn-eng)
type: mteb/tatoeba-bitext-mining
config: cmn-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 94.69999999999999
- type: f1
value: 93.34555555555555
- type: precision
value: 92.75416666666668
- type: recall
value: 94.69999999999999
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (lvs-eng)
type: mteb/tatoeba-bitext-mining
config: lvs-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 80.2
- type: f1
value: 76.6563035113035
- type: precision
value: 75.3014652014652
- type: recall
value: 80.2
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (glg-eng)
type: mteb/tatoeba-bitext-mining
config: glg-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 84.7
- type: f1
value: 82.78689263765207
- type: precision
value: 82.06705086580087
- type: recall
value: 84.7
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ceb-eng)
type: mteb/tatoeba-bitext-mining
config: ceb-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 50.33333333333333
- type: f1
value: 45.461523661523664
- type: precision
value: 43.93545574795575
- type: recall
value: 50.33333333333333
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (bre-eng)
type: mteb/tatoeba-bitext-mining
config: bre-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 6.6000000000000005
- type: f1
value: 5.442121400446441
- type: precision
value: 5.146630385487529
- type: recall
value: 6.6000000000000005
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ben-eng)
type: mteb/tatoeba-bitext-mining
config: ben-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 85
- type: f1
value: 81.04666666666667
- type: precision
value: 79.25
- type: recall
value: 85
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (swg-eng)
type: mteb/tatoeba-bitext-mining
config: swg-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 47.32142857142857
- type: f1
value: 42.333333333333336
- type: precision
value: 40.69196428571429
- type: recall
value: 47.32142857142857
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (arq-eng)
type: mteb/tatoeba-bitext-mining
config: arq-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 30.735455543358945
- type: f1
value: 26.73616790022338
- type: precision
value: 25.397823220451283
- type: recall
value: 30.735455543358945
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (kab-eng)
type: mteb/tatoeba-bitext-mining
config: kab-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 25.1
- type: f1
value: 21.975989896371022
- type: precision
value: 21.059885632257203
- type: recall
value: 25.1
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (fra-eng)
type: mteb/tatoeba-bitext-mining
config: fra-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 94.3
- type: f1
value: 92.75666666666666
- type: precision
value: 92.06166666666665
- type: recall
value: 94.3
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (por-eng)
type: mteb/tatoeba-bitext-mining
config: por-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 94.1
- type: f1
value: 92.74
- type: precision
value: 92.09166666666667
- type: recall
value: 94.1
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (tat-eng)
type: mteb/tatoeba-bitext-mining
config: tat-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 71.3
- type: f1
value: 66.922442002442
- type: precision
value: 65.38249567099568
- type: recall
value: 71.3
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (oci-eng)
type: mteb/tatoeba-bitext-mining
config: oci-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 40.300000000000004
- type: f1
value: 35.78682789299971
- type: precision
value: 34.66425128716588
- type: recall
value: 40.300000000000004
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (pol-eng)
type: mteb/tatoeba-bitext-mining
config: pol-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 96
- type: f1
value: 94.82333333333334
- type: precision
value: 94.27833333333334
- type: recall
value: 96
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (war-eng)
type: mteb/tatoeba-bitext-mining
config: war-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 51.1
- type: f1
value: 47.179074753133584
- type: precision
value: 46.06461044702424
- type: recall
value: 51.1
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (aze-eng)
type: mteb/tatoeba-bitext-mining
config: aze-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 87.7
- type: f1
value: 84.71
- type: precision
value: 83.46166666666667
- type: recall
value: 87.7
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (vie-eng)
type: mteb/tatoeba-bitext-mining
config: vie-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.8
- type: f1
value: 94.68333333333334
- type: precision
value: 94.13333333333334
- type: recall
value: 95.8
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (nno-eng)
type: mteb/tatoeba-bitext-mining
config: nno-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 85.39999999999999
- type: f1
value: 82.5577380952381
- type: precision
value: 81.36833333333334
- type: recall
value: 85.39999999999999
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (cha-eng)
type: mteb/tatoeba-bitext-mining
config: cha-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 21.16788321167883
- type: f1
value: 16.948865627297987
- type: precision
value: 15.971932568647897
- type: recall
value: 21.16788321167883
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (mhr-eng)
type: mteb/tatoeba-bitext-mining
config: mhr-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 6.9
- type: f1
value: 5.515526831658907
- type: precision
value: 5.141966366966367
- type: recall
value: 6.9
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (dan-eng)
type: mteb/tatoeba-bitext-mining
config: dan-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 93.2
- type: f1
value: 91.39666666666668
- type: precision
value: 90.58666666666667
- type: recall
value: 93.2
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ell-eng)
type: mteb/tatoeba-bitext-mining
config: ell-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 92.2
- type: f1
value: 89.95666666666666
- type: precision
value: 88.92833333333333
- type: recall
value: 92.2
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (amh-eng)
type: mteb/tatoeba-bitext-mining
config: amh-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 79.76190476190477
- type: f1
value: 74.93386243386244
- type: precision
value: 73.11011904761904
- type: recall
value: 79.76190476190477
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (pam-eng)
type: mteb/tatoeba-bitext-mining
config: pam-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 8.799999999999999
- type: f1
value: 6.921439712248537
- type: precision
value: 6.489885109680683
- type: recall
value: 8.799999999999999
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (hsb-eng)
type: mteb/tatoeba-bitext-mining
config: hsb-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 45.75569358178054
- type: f1
value: 40.34699501312631
- type: precision
value: 38.57886764719063
- type: recall
value: 45.75569358178054
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (srp-eng)
type: mteb/tatoeba-bitext-mining
config: srp-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 91.4
- type: f1
value: 89.08333333333333
- type: precision
value: 88.01666666666668
- type: recall
value: 91.4
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (epo-eng)
type: mteb/tatoeba-bitext-mining
config: epo-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 93.60000000000001
- type: f1
value: 92.06690476190477
- type: precision
value: 91.45095238095239
- type: recall
value: 93.60000000000001
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (kzj-eng)
type: mteb/tatoeba-bitext-mining
config: kzj-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 7.5
- type: f1
value: 6.200363129378736
- type: precision
value: 5.89115314822466
- type: recall
value: 7.5
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (awa-eng)
type: mteb/tatoeba-bitext-mining
config: awa-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 73.59307359307358
- type: f1
value: 68.38933553219267
- type: precision
value: 66.62698412698413
- type: recall
value: 73.59307359307358
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (fao-eng)
type: mteb/tatoeba-bitext-mining
config: fao-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 69.8473282442748
- type: f1
value: 64.72373682297346
- type: precision
value: 62.82834214131924
- type: recall
value: 69.8473282442748
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (mal-eng)
type: mteb/tatoeba-bitext-mining
config: mal-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 97.5254730713246
- type: f1
value: 96.72489082969432
- type: precision
value: 96.33672974284326
- type: recall
value: 97.5254730713246
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ile-eng)
type: mteb/tatoeba-bitext-mining
config: ile-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 75.6
- type: f1
value: 72.42746031746033
- type: precision
value: 71.14036630036631
- type: recall
value: 75.6
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (bos-eng)
type: mteb/tatoeba-bitext-mining
config: bos-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 91.24293785310734
- type: f1
value: 88.86064030131826
- type: precision
value: 87.73540489642184
- type: recall
value: 91.24293785310734
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (cor-eng)
type: mteb/tatoeba-bitext-mining
config: cor-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 6.2
- type: f1
value: 4.383083659794954
- type: precision
value: 4.027861324289673
- type: recall
value: 6.2
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (cat-eng)
type: mteb/tatoeba-bitext-mining
config: cat-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 86.8
- type: f1
value: 84.09428571428572
- type: precision
value: 83.00333333333333
- type: recall
value: 86.8
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (eus-eng)
type: mteb/tatoeba-bitext-mining
config: eus-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 60.699999999999996
- type: f1
value: 56.1584972394755
- type: precision
value: 54.713456330903135
- type: recall
value: 60.699999999999996
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (yue-eng)
type: mteb/tatoeba-bitext-mining
config: yue-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 84.2
- type: f1
value: 80.66190476190475
- type: precision
value: 79.19690476190476
- type: recall
value: 84.2
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (swe-eng)
type: mteb/tatoeba-bitext-mining
config: swe-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 93.2
- type: f1
value: 91.33
- type: precision
value: 90.45
- type: recall
value: 93.2
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (dtp-eng)
type: mteb/tatoeba-bitext-mining
config: dtp-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 6.3
- type: f1
value: 5.126828976748276
- type: precision
value: 4.853614328966668
- type: recall
value: 6.3
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (kat-eng)
type: mteb/tatoeba-bitext-mining
config: kat-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 81.76943699731903
- type: f1
value: 77.82873739308057
- type: precision
value: 76.27622452019234
- type: recall
value: 81.76943699731903
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (jpn-eng)
type: mteb/tatoeba-bitext-mining
config: jpn-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 92.30000000000001
- type: f1
value: 90.29666666666665
- type: precision
value: 89.40333333333334
- type: recall
value: 92.30000000000001
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (csb-eng)
type: mteb/tatoeba-bitext-mining
config: csb-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 29.249011857707508
- type: f1
value: 24.561866096392947
- type: precision
value: 23.356583740215456
- type: recall
value: 29.249011857707508
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (xho-eng)
type: mteb/tatoeba-bitext-mining
config: xho-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 77.46478873239437
- type: f1
value: 73.23943661971832
- type: precision
value: 71.66666666666667
- type: recall
value: 77.46478873239437
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (orv-eng)
type: mteb/tatoeba-bitext-mining
config: orv-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 20.35928143712575
- type: f1
value: 15.997867865075824
- type: precision
value: 14.882104658301346
- type: recall
value: 20.35928143712575
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ind-eng)
type: mteb/tatoeba-bitext-mining
config: ind-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 92.2
- type: f1
value: 90.25999999999999
- type: precision
value: 89.45333333333335
- type: recall
value: 92.2
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (tuk-eng)
type: mteb/tatoeba-bitext-mining
config: tuk-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 23.15270935960591
- type: f1
value: 19.65673625772148
- type: precision
value: 18.793705293464992
- type: recall
value: 23.15270935960591
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (max-eng)
type: mteb/tatoeba-bitext-mining
config: max-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 59.154929577464785
- type: f1
value: 52.3868463305083
- type: precision
value: 50.14938113529662
- type: recall
value: 59.154929577464785
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (swh-eng)
type: mteb/tatoeba-bitext-mining
config: swh-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 70.51282051282051
- type: f1
value: 66.8089133089133
- type: precision
value: 65.37645687645687
- type: recall
value: 70.51282051282051
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (hin-eng)
type: mteb/tatoeba-bitext-mining
config: hin-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 94.6
- type: f1
value: 93
- type: precision
value: 92.23333333333333
- type: recall
value: 94.6
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (dsb-eng)
type: mteb/tatoeba-bitext-mining
config: dsb-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 38.62212943632568
- type: f1
value: 34.3278276962583
- type: precision
value: 33.07646935732408
- type: recall
value: 38.62212943632568
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ber-eng)
type: mteb/tatoeba-bitext-mining
config: ber-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 28.1
- type: f1
value: 23.579609223054604
- type: precision
value: 22.39622774921555
- type: recall
value: 28.1
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (tam-eng)
type: mteb/tatoeba-bitext-mining
config: tam-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 88.27361563517914
- type: f1
value: 85.12486427795874
- type: precision
value: 83.71335504885994
- type: recall
value: 88.27361563517914
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (slk-eng)
type: mteb/tatoeba-bitext-mining
config: slk-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 88.6
- type: f1
value: 86.39928571428571
- type: precision
value: 85.4947557997558
- type: recall
value: 88.6
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (tgl-eng)
type: mteb/tatoeba-bitext-mining
config: tgl-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 86.5
- type: f1
value: 83.77952380952381
- type: precision
value: 82.67602564102565
- type: recall
value: 86.5
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ast-eng)
type: mteb/tatoeba-bitext-mining
config: ast-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 79.52755905511812
- type: f1
value: 75.3055868016498
- type: precision
value: 73.81889763779527
- type: recall
value: 79.52755905511812
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (mkd-eng)
type: mteb/tatoeba-bitext-mining
config: mkd-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 77.9
- type: f1
value: 73.76261904761905
- type: precision
value: 72.11670995670995
- type: recall
value: 77.9
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (khm-eng)
type: mteb/tatoeba-bitext-mining
config: khm-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 53.8781163434903
- type: f1
value: 47.25804051288816
- type: precision
value: 45.0603482390186
- type: recall
value: 53.8781163434903
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ces-eng)
type: mteb/tatoeba-bitext-mining
config: ces-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 91.10000000000001
- type: f1
value: 88.88
- type: precision
value: 87.96333333333334
- type: recall
value: 91.10000000000001
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (tzl-eng)
type: mteb/tatoeba-bitext-mining
config: tzl-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 38.46153846153847
- type: f1
value: 34.43978243978244
- type: precision
value: 33.429487179487175
- type: recall
value: 38.46153846153847
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (urd-eng)
type: mteb/tatoeba-bitext-mining
config: urd-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 88.9
- type: f1
value: 86.19888888888887
- type: precision
value: 85.07440476190476
- type: recall
value: 88.9
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (ara-eng)
type: mteb/tatoeba-bitext-mining
config: ara-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 85.9
- type: f1
value: 82.58857142857143
- type: precision
value: 81.15666666666667
- type: recall
value: 85.9
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (kor-eng)
type: mteb/tatoeba-bitext-mining
config: kor-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 86.8
- type: f1
value: 83.36999999999999
- type: precision
value: 81.86833333333333
- type: recall
value: 86.8
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (yid-eng)
type: mteb/tatoeba-bitext-mining
config: yid-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 68.51415094339622
- type: f1
value: 63.195000099481234
- type: precision
value: 61.394033442972116
- type: recall
value: 68.51415094339622
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (fin-eng)
type: mteb/tatoeba-bitext-mining
config: fin-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 88.5
- type: f1
value: 86.14603174603175
- type: precision
value: 85.1162037037037
- type: recall
value: 88.5
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (tha-eng)
type: mteb/tatoeba-bitext-mining
config: tha-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 95.62043795620438
- type: f1
value: 94.40389294403892
- type: precision
value: 93.7956204379562
- type: recall
value: 95.62043795620438
- task:
type: BitextMining
dataset:
name: MTEB Tatoeba (wuu-eng)
type: mteb/tatoeba-bitext-mining
config: wuu-eng
split: test
revision: 9080400076fbadbb4c4dcb136ff4eddc40b42553
metrics:
- type: accuracy
value: 81.8
- type: f1
value: 78.6532178932179
- type: precision
value: 77.46348795840176
- type: recall
value: 81.8
- task:
type: Retrieval
dataset:
name: MTEB Touche2020
type: webis-touche2020
config: default
split: test
revision: None
metrics:
- type: map_at_1
value: 2.603
- type: map_at_10
value: 8.5
- type: map_at_100
value: 12.985
- type: map_at_1000
value: 14.466999999999999
- type: map_at_3
value: 4.859999999999999
- type: map_at_5
value: 5.817
- type: mrr_at_1
value: 28.571
- type: mrr_at_10
value: 42.331
- type: mrr_at_100
value: 43.592999999999996
- type: mrr_at_1000
value: 43.592999999999996
- type: mrr_at_3
value: 38.435
- type: mrr_at_5
value: 39.966
- type: ndcg_at_1
value: 26.531
- type: ndcg_at_10
value: 21.353
- type: ndcg_at_100
value: 31.087999999999997
- type: ndcg_at_1000
value: 43.163000000000004
- type: ndcg_at_3
value: 22.999
- type: ndcg_at_5
value: 21.451
- type: precision_at_1
value: 28.571
- type: precision_at_10
value: 19.387999999999998
- type: precision_at_100
value: 6.265
- type: precision_at_1000
value: 1.4160000000000001
- type: precision_at_3
value: 24.490000000000002
- type: precision_at_5
value: 21.224
- type: recall_at_1
value: 2.603
- type: recall_at_10
value: 14.474
- type: recall_at_100
value: 40.287
- type: recall_at_1000
value: 76.606
- type: recall_at_3
value: 5.978
- type: recall_at_5
value: 7.819
- task:
type: Classification
dataset:
name: MTEB ToxicConversationsClassification
type: mteb/toxic_conversations_50k
config: default
split: test
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
metrics:
- type: accuracy
value: 69.7848
- type: ap
value: 13.661023167088224
- type: f1
value: 53.61686134460943
- task:
type: Classification
dataset:
name: MTEB TweetSentimentExtractionClassification
type: mteb/tweet_sentiment_extraction
config: default
split: test
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
metrics:
- type: accuracy
value: 61.28183361629882
- type: f1
value: 61.55481034919965
- task:
type: Clustering
dataset:
name: MTEB TwentyNewsgroupsClustering
type: mteb/twentynewsgroups-clustering
config: default
split: test
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
metrics:
- type: v_measure
value: 35.972128420092396
- task:
type: PairClassification
dataset:
name: MTEB TwitterSemEval2015
type: mteb/twittersemeval2015-pairclassification
config: default
split: test
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
metrics:
- type: cos_sim_accuracy
value: 85.59933241938367
- type: cos_sim_ap
value: 72.20760361208136
- type: cos_sim_f1
value: 66.4447731755424
- type: cos_sim_precision
value: 62.35539102267469
- type: cos_sim_recall
value: 71.10817941952506
- type: dot_accuracy
value: 78.98313166835548
- type: dot_ap
value: 44.492521645493795
- type: dot_f1
value: 45.814889336016094
- type: dot_precision
value: 37.02439024390244
- type: dot_recall
value: 60.07915567282321
- type: euclidean_accuracy
value: 85.3907134767837
- type: euclidean_ap
value: 71.53847289080343
- type: euclidean_f1
value: 65.95952206778834
- type: euclidean_precision
value: 61.31006346328196
- type: euclidean_recall
value: 71.37203166226914
- type: manhattan_accuracy
value: 85.40859510043511
- type: manhattan_ap
value: 71.49664104395515
- type: manhattan_f1
value: 65.98569969356485
- type: manhattan_precision
value: 63.928748144482924
- type: manhattan_recall
value: 68.17941952506597
- type: max_accuracy
value: 85.59933241938367
- type: max_ap
value: 72.20760361208136
- type: max_f1
value: 66.4447731755424
- task:
type: PairClassification
dataset:
name: MTEB TwitterURLCorpus
type: mteb/twitterurlcorpus-pairclassification
config: default
split: test
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
metrics:
- type: cos_sim_accuracy
value: 88.83261536073273
- type: cos_sim_ap
value: 85.48178133644264
- type: cos_sim_f1
value: 77.87816307403935
- type: cos_sim_precision
value: 75.88953021114926
- type: cos_sim_recall
value: 79.97382198952879
- type: dot_accuracy
value: 79.76287499514883
- type: dot_ap
value: 59.17438838475084
- type: dot_f1
value: 56.34566667855996
- type: dot_precision
value: 52.50349092359864
- type: dot_recall
value: 60.794579611949494
- type: euclidean_accuracy
value: 88.76857996662397
- type: euclidean_ap
value: 85.22764834359887
- type: euclidean_f1
value: 77.65379751543554
- type: euclidean_precision
value: 75.11152683839401
- type: euclidean_recall
value: 80.37419156144134
- type: manhattan_accuracy
value: 88.6987231730508
- type: manhattan_ap
value: 85.18907981724007
- type: manhattan_f1
value: 77.51967028849757
- type: manhattan_precision
value: 75.49992701795358
- type: manhattan_recall
value: 79.65044656606098
- type: max_accuracy
value: 88.83261536073273
- type: max_ap
value: 85.48178133644264
- type: max_f1
value: 77.87816307403935
multilingual-e5-base-mlx
This model was converted to MLX format from intfloat/multilingual-e5-base
.
Refer to the original model card for more details on the model.
Use with mlx
pip install mlx
git clone https://github.com/ml-explore/mlx-examples.git
cd mlx-examples/llms/hf_llm
python generate.py --model mlx-community/multilingual-e5-base-mlx --prompt "My name is"