osbm's picture
update model card README.md
79b9fc6
|
raw
history blame
2.99 kB
metadata
tags:
  - generated_from_trainer
datasets:
  - preprocessed1024_config
metrics:
  - accuracy
  - f1
model-index:
  - name: convnext-mlo-512-breat_composition
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: preprocessed1024_config
          type: preprocessed1024_config
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value:
              accuracy: 0.5665829145728644
          - name: F1
            type: f1
            value:
              f1: 0.5549950963329491

convnext-mlo-512-breat_composition

This model is a fine-tuned version of on the preprocessed1024_config dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1801
  • Accuracy: {'accuracy': 0.5665829145728644}
  • F1: {'f1': 0.5549950963329491}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.3412 1.0 796 1.1931 {'accuracy': 0.4547738693467337} {'f1': 0.31154642522501674}
1.1149 2.0 1592 1.0845 {'accuracy': 0.4886934673366834} {'f1': 0.40829339044510005}
1.0531 3.0 2388 1.1650 {'accuracy': 0.48304020100502515} {'f1': 0.38992060973001436}
0.917 4.0 3184 0.9950 {'accuracy': 0.5452261306532663} {'f1': 0.50281030200465}
0.8633 5.0 3980 1.0152 {'accuracy': 0.5552763819095478} {'f1': 0.511332789082197}
0.7747 6.0 4776 1.0201 {'accuracy': 0.5703517587939698} {'f1': 0.523154780871296}
0.7133 7.0 5572 1.0345 {'accuracy': 0.5640703517587939} {'f1': 0.5198008328503952}
0.659 8.0 6368 1.0702 {'accuracy': 0.5785175879396985} {'f1': 0.5460580312777853}
0.5943 9.0 7164 1.1634 {'accuracy': 0.5734924623115578} {'f1': 0.5501266468657362}
0.5699 10.0 7960 1.1801 {'accuracy': 0.5665829145728644} {'f1': 0.5549950963329491}

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.12.0
  • Datasets 2.1.0
  • Tokenizers 0.12.1