osbm's picture
update model card README.md
c15ae00
|
raw
history blame
2.97 kB
metadata
tags:
  - generated_from_trainer
datasets:
  - preprocessed1024_config
metrics:
  - accuracy
  - f1
model-index:
  - name: vit-mlo-512-breat_composition
    results:
      - task:
          name: Image Classification
          type: image-classification
        dataset:
          name: preprocessed1024_config
          type: preprocessed1024_config
          args: default
        metrics:
          - name: Accuracy
            type: accuracy
            value:
              accuracy: 0.5791457286432161
          - name: F1
            type: f1
            value:
              f1: 0.5749067914290308

vit-mlo-512-breat_composition

This model is a fine-tuned version of on the preprocessed1024_config dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3123
  • Accuracy: {'accuracy': 0.5791457286432161}
  • F1: {'f1': 0.5749067914290308}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
1.2679 1.0 796 1.0281 {'accuracy': 0.5062814070351759} {'f1': 0.38950358034816535}
0.9805 2.0 1592 0.9240 {'accuracy': 0.5672110552763819} {'f1': 0.5273112700912543}
0.9167 3.0 2388 0.9608 {'accuracy': 0.5477386934673367} {'f1': 0.45736748568671376}
0.8292 4.0 3184 0.8973 {'accuracy': 0.5891959798994975} {'f1': 0.5783349603036094}
0.7695 5.0 3980 1.0477 {'accuracy': 0.5571608040201005} {'f1': 0.5379432393338944}
0.6912 6.0 4776 0.9479 {'accuracy': 0.585427135678392} {'f1': 0.5766494177636581}
0.61 7.0 5572 1.1280 {'accuracy': 0.5703517587939698} {'f1': 0.5560158679652624}
0.5591 8.0 6368 1.1866 {'accuracy': 0.5741206030150754} {'f1': 0.5541999644498281}
0.5021 9.0 7164 1.1537 {'accuracy': 0.582286432160804} {'f1': 0.566315815243799}
0.4262 10.0 7960 1.3123 {'accuracy': 0.5791457286432161} {'f1': 0.5749067914290308}

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.12.0
  • Datasets 2.1.0
  • Tokenizers 0.12.1