metadata
tags:
- generated_from_trainer
datasets:
- preprocessed1024_config
metrics:
- accuracy
- f1
model-index:
- name: vit-model
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: preprocessed1024_config
type: preprocessed1024_config
args: default
metrics:
- name: Accuracy
type: accuracy
value:
accuracy: 0.5615577889447236
- name: F1
type: f1
value:
f1: 0.5213901124963216
vit-model
This model is a fine-tuned version of on the preprocessed1024_config dataset. It achieves the following results on the evaluation set:
- Loss: 0.9396
- Accuracy: {'accuracy': 0.5615577889447236}
- F1: {'f1': 0.5213901124963216}
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
---|---|---|---|---|---|
1.221 | 1.0 | 796 | 0.9396 | {'accuracy': 0.5615577889447236} | {'f1': 0.5213901124963216} |
Framework versions
- Transformers 4.20.1
- Pytorch 1.12.0
- Datasets 2.1.0
- Tokenizers 0.12.1