bert-nandha
This model is a fine-tuned version of bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:
- Train Loss: 0.0754
- Train Accuracy: 0.9847
- Validation Loss: 0.0764
- Validation Accuracy: 0.9855
- Epoch: 2
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 5e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
- training_precision: float32
Training results
Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch |
---|---|---|---|---|
0.2388 | 0.9651 | 0.0972 | 0.9870 | 0 |
0.0842 | 0.9833 | 0.0702 | 0.9861 | 1 |
0.0754 | 0.9847 | 0.0764 | 0.9855 | 2 |
Framework versions
- Transformers 4.46.2
- TensorFlow 2.16.1
- Datasets 3.0.1
- Tokenizers 0.20.0
- Downloads last month
- 62
Inference Providers
NEW
This model is not currently available via any of the supported third-party Inference Providers, and
the model is not deployed on the HF Inference API.
Model tree for mmtg/bert-nandha
Base model
google-bert/bert-base-multilingual-cased