bert-nandha

This model is a fine-tuned version of bert-base-multilingual-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Train Loss: 0.0754
  • Train Accuracy: 0.9847
  • Validation Loss: 0.0764
  • Validation Accuracy: 0.9855
  • Epoch: 2

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • optimizer: {'name': 'Adam', 'weight_decay': None, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 5e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False}
  • training_precision: float32

Training results

Train Loss Train Accuracy Validation Loss Validation Accuracy Epoch
0.2388 0.9651 0.0972 0.9870 0
0.0842 0.9833 0.0702 0.9861 1
0.0754 0.9847 0.0764 0.9855 2

Framework versions

  • Transformers 4.46.2
  • TensorFlow 2.16.1
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
62
Inference Providers NEW
This model is not currently available via any of the supported third-party Inference Providers, and the model is not deployed on the HF Inference API.

Model tree for mmtg/bert-nandha

Finetuned
(636)
this model