inctraining5 / README.md
mn720's picture
End of training
27d512c verified
|
raw
history blame
2.34 kB
metadata
language:
  - sw
license: apache-2.0
base_model: openai/whisper-small
tags:
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_15_0
metrics:
  - wer
model-index:
  - name: Incremental Swahili Luganda
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Mix data
          type: mozilla-foundation/common_voice_15_0
          config: lg
          split: validation
          args: 'config: lu, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 30.81815492541098

Incremental Swahili Luganda

This model is a fine-tuned version of openai/whisper-small on the Mix data dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3450
  • Wer: 30.8182

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 4000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.1442 0.1129 500 0.3683 32.9502
0.1532 0.2258 1000 0.3707 32.7589
0.1478 0.3388 1500 0.3663 33.0019
0.1375 0.4517 2000 0.3625 31.7817
0.1509 0.5646 2500 0.3552 32.2106
0.139 0.6775 3000 0.3510 31.5271
0.1404 0.7904 3500 0.3473 30.9787
0.1349 0.9033 4000 0.3450 30.8182

Framework versions

  • Transformers 4.40.0
  • Pytorch 2.2.2+cu118
  • Datasets 2.19.0
  • Tokenizers 0.19.1