mnazari's picture
wav2vec2-large-mms-1b-urmi-christian-nostress
3891c10
metadata
license: cc-by-nc-4.0
base_model: facebook/mms-1b-all
tags:
  - generated_from_trainer
datasets:
  - nena_speech_1_0_test
metrics:
  - wer
model-index:
  - name: wav2vec2-large-mms-1b-urmi-christian-nostress
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: nena_speech_1_0_test
          type: nena_speech_1_0_test
          config: urmi (christian)
          split: test
          args: urmi (christian)
        metrics:
          - name: Wer
            type: wer
            value: 0.944954128440367

wav2vec2-large-mms-1b-urmi-christian-nostress

This model is a fine-tuned version of facebook/mms-1b-all on the nena_speech_1_0_test dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6617
  • Wer: 0.9450
  • Cer: 0.1846

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 32
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Wer Cer
14.5154 0.78 25 10.7711 1.0 0.9743
7.3688 1.56 50 6.3951 1.0 0.9408
3.895 2.34 75 2.4755 1.0 0.7579
1.6699 3.12 100 0.8689 0.9725 0.2286
1.1293 3.91 125 0.7194 0.9633 0.1981
0.9637 4.69 150 0.6617 0.9450 0.1846

Framework versions

  • Transformers 4.34.1
  • Pytorch 2.1.0+cu121
  • Datasets 2.14.6
  • Tokenizers 0.14.1