pythia410m-dpo2-tldr

This model is a fine-tuned version of mnoukhov/pythia410m-sft-tldr on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6073
  • Rewards/chosen: -1.2728
  • Rewards/rejected: -1.5670
  • Rewards/accuracies: 0.6761
  • Rewards/margins: 0.2942
  • Logps/rejected: -91.1163
  • Logps/chosen: -91.1163
  • Logps/ref Rejected: -59.5615
  • Logps/ref Chosen: -65.6594

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 4
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • total_eval_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • num_epochs: 1.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logps/ref Rejected Logps/ref Chosen
0.6681 0.1999 335 0.6376 -0.2343 -0.3789 0.6615 0.1446 -70.3464 -70.3464 -59.5615 -65.6594
0.6485 0.3999 670 0.6171 -0.9421 -1.1796 0.6678 0.2375 -84.5023 -84.5023 -59.5615 -65.6594
0.6362 0.5998 1005 0.6095 -1.1035 -1.3785 0.6743 0.2750 -87.7290 -87.7290 -59.5615 -65.6594
0.6342 0.7998 1340 0.6063 -1.2460 -1.5415 0.6768 0.2955 -90.5797 -90.5797 -59.5615 -65.6594
0.6299 0.9997 1675 0.6073 -1.2728 -1.5670 0.6761 0.2942 -91.1163 -91.1163 -59.5615 -65.6594

Framework versions

  • PEFT 0.10.0
  • Transformers 4.40.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1
Downloads last month
0
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for mnoukhov/pythia410m-dpo2-tldr

Adapter
(4)
this model