metadata
license: apache-2.0
tags:
- moe
train: false
inference: false
pipeline_tag: text-generation
Mixtral-8x7B-Instruct-v0.1-hf-attn-4bit-moe-3bit-metaoffload-HQQ
This is a version of the Mixtral-8x7B-Instruct-v0.1 model quantized with a mix of 4-bit and 3-bit via Half-Quadratic Quantization (HQQ). More specifically, the attention layers are quantized to 4-bit and the experts are quantized to 3-bit.
Contrary to the 2bitgs8 model that was designed to use less GPU memory, this one uses about ~22GB for the folks who want to get better quality and use the maximum VRAM available on 24GB GPUs. It reaches an impressive 71.10 LLM leaderboard score, not too far from the original model's 72.62.
Performance
Models | Mixtral Original | HQQ quantized |
---|---|---|
Runtime VRAM | 94 GB | 22.3 GB |
ARC (25-shot) | 70.22 | 69.62 |
Hellaswag (10-shot) | 87.63 | 86.05 |
MMLU (5-shot) | 71.16 | 69.46 |
TruthfulQA-MC2 | 64.58 | 62.63 |
Winogrande (5-shot) | 81.37 | 81.06 |
GSM8K (5-shot) | 60.73 | 57.77 |
Average | 72.62 | 71.10 |
Basic Usage
To run the model, install the HQQ library from https://github.com/mobiusml/hqq and use it as follows:
import transformers
from threading import Thread
model_id = 'mobiuslabsgmbh/Mixtral-8x7B-Instruct-v0.1-hf-attn-4bit-moe-3bit-metaoffload-HQQ'
#Load the model
from hqq.engine.hf import HQQModelForCausalLM, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained(model_id)
model = HQQModelForCausalLM.from_quantized(model_id)
#Optional: set backend/compile
#You will need to install CUDA kernels apriori
# git clone https://github.com/mobiusml/hqq/
# cd hqq/kernels && python setup_cuda.py install
from hqq.core.quantize import *
HQQLinear.set_backend(HQQBackend.ATEN_BACKPROP)
def chat_processor(chat, max_new_tokens=100, do_sample=True):
tokenizer.use_default_system_prompt = False
streamer = transformers.TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
generate_params = dict(
tokenizer("<s> [INST] " + chat + " [/INST] ", return_tensors="pt").to('cuda'),
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=do_sample,
top_p=0.90,
top_k=50,
temperature= 0.6,
num_beams=1,
repetition_penalty=1.2,
)
t = Thread(target=model.generate, kwargs=generate_params)
t.start()
outputs = []
for text in streamer:
outputs.append(text)
print(text, end="", flush=True)
return outputs
################################################################################################
#Generation
outputs = chat_processor("How do I build a car?", max_new_tokens=1000, do_sample=False)
Quantization
You can reproduce the model using the following quant configs:
from hqq.engine.hf import HQQModelForCausalLM, AutoTokenizer
model_id = "mistralai/Mixtral-8x7B-Instruct-v0.1"
model = HQQModelForCausalLM.from_pretrained(model_id, use_auth_token=hf_auth, cache_dir=cache_path)
#Quantize params
from hqq.core.quantize import *
attn_prams = BaseQuantizeConfig(nbits=4, group_size=64, offload_meta=True)
experts_params = BaseQuantizeConfig(nbits=3, group_size=64, offload_meta=True)
zero_scale_group_size = 128
attn_prams['scale_quant_params']['group_size'] = zero_scale_group_size
attn_prams['zero_quant_params']['group_size'] = zero_scale_group_size
experts_params['scale_quant_params']['group_size'] = zero_scale_group_size
experts_params['zero_quant_params']['group_size'] = zero_scale_group_size
quant_config = {}
#Attention
quant_config['self_attn.q_proj'] = attn_prams
quant_config['self_attn.k_proj'] = attn_prams
quant_config['self_attn.v_proj'] = attn_prams
quant_config['self_attn.o_proj'] = attn_prams
#Experts
quant_config['block_sparse_moe.experts.w1'] = experts_params
quant_config['block_sparse_moe.experts.w2'] = experts_params
quant_config['block_sparse_moe.experts.w3'] = experts_params
#Quantize
model.quantize_model(quant_config=quant_config, compute_dtype=torch.float16);
model.eval();