finetuned-parsbert-uncased-ArmanEmo
This model is a fine-tuned version of HooshvareLab/bert-base-parsbert-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0060
- Accuracy: 1.0
- Precision Macro: 1.0
- Recall Macro: 1.0
- F1 Macro: 1.0
- F1 C0: 1.0
- F1 C1: 1.0
- F1 C2: 1.0
- F1 C3: 1.0
- F1 C4: 1.0
- F1 C5: 1.0
- F1 C6: 1.0
- Recall C0: 1.0
- Recall C1: 1.0
- Recall C2: 1.0
- Recall C3: 1.0
- Recall C4: 1.0
- Recall C5: 1.0
- Recall C6: 1.0
- Precision C0: 1.0
- Precision C1: 1.0
- Precision C2: 1.0
- Precision C3: 1.0
- Precision C4: 1.0
- Precision C5: 1.0
- Precision C6: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- num_epochs: 10
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy | Precision Macro | Recall Macro | F1 Macro | F1 C0 | F1 C1 | F1 C2 | F1 C3 | F1 C4 | F1 C5 | F1 C6 | Recall C0 | Recall C1 | Recall C2 | Recall C3 | Recall C4 | Recall C5 | Recall C6 | Precision C0 | Precision C1 | Precision C2 | Precision C3 | Precision C4 | Precision C5 | Precision C6 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
No log | 1.0 | 144 | 0.3531 | 0.5065 | 0.3687 | 0.3986 | 0.3583 | 0.6766 | 0.3370 | 0.4966 | 0.0 | 0.4164 | 0.0 | 0.5817 | 0.9091 | 0.2366 | 0.7143 | 0.0 | 0.3862 | 0.0 | 0.5440 | 0.5388 | 0.5849 | 0.3806 | 0.0 | 0.4516 | 0.0 | 0.625 |
No log | 2.0 | 288 | 0.2289 | 0.7298 | 0.5210 | 0.5631 | 0.5333 | 0.8451 | 0.7790 | 0.6063 | 0.0 | 0.6905 | 0.0 | 0.8120 | 0.9818 | 0.8206 | 0.5 | 0.0 | 0.8 | 0.0 | 0.8394 | 0.7418 | 0.7414 | 0.77 | 0.0 | 0.6073 | 0.0 | 0.7864 |
No log | 3.0 | 432 | 0.1129 | 0.9270 | 0.9239 | 0.8955 | 0.9061 | 0.9762 | 0.9492 | 0.8910 | 0.9027 | 0.8792 | 0.8108 | 0.9333 | 0.9709 | 0.9618 | 0.9026 | 0.8947 | 0.9034 | 0.6923 | 0.9430 | 0.9816 | 0.9368 | 0.8797 | 0.9107 | 0.8562 | 0.9783 | 0.9239 |
0.3027 | 4.0 | 576 | 0.0567 | 0.9652 | 0.9491 | 0.9545 | 0.9507 | 0.9909 | 0.9847 | 0.9161 | 0.9402 | 0.9565 | 0.8872 | 0.9796 | 0.9927 | 0.9847 | 0.8506 | 0.9649 | 0.9862 | 0.9077 | 0.9948 | 0.9891 | 0.9847 | 0.9924 | 0.9167 | 0.9286 | 0.8676 | 0.9648 |
0.3027 | 5.0 | 720 | 0.0296 | 0.9844 | 0.9736 | 0.9819 | 0.9776 | 0.9964 | 0.9885 | 0.9673 | 0.9913 | 0.9862 | 0.9185 | 0.9948 | 0.9927 | 0.9847 | 0.9610 | 1.0 | 0.9862 | 0.9538 | 0.9948 | 1.0 | 0.9923 | 0.9737 | 0.9828 | 0.9862 | 0.8857 | 0.9948 |
0.3027 | 6.0 | 864 | 0.0144 | 0.9965 | 0.9939 | 0.9937 | 0.9938 | 0.9982 | 1.0 | 0.9935 | 0.9913 | 0.9965 | 0.9767 | 1.0 | 1.0 | 1.0 | 0.9935 | 1.0 | 0.9931 | 0.9692 | 1.0 | 0.9964 | 1.0 | 0.9935 | 0.9828 | 1.0 | 0.9844 | 1.0 |
0.0482 | 7.0 | 1008 | 0.0088 | 0.9991 | 0.9993 | 0.9990 | 0.9991 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9965 | 1.0 | 0.9974 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9931 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 0.9948 |
0.0482 | 8.0 | 1152 | 0.0069 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0482 | 9.0 | 1296 | 0.0063 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
0.0482 | 10.0 | 1440 | 0.0060 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 | 1.0 |
Framework versions
- Transformers 4.38.1
- Pytorch 2.1.0+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 11
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for mohammadhabp/finetuned-parsbert-uncased-ArmanEmo
Base model
HooshvareLab/bert-base-parsbert-uncased