monai
medical
katielink's picture
Initial release
9384dae
raw
history blame
2.16 kB
# Copyright (c) MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
import torch
import torch.nn as nn
from monai.utils import optional_import
from torch.cuda.amp import autocast
tqdm, has_tqdm = optional_import("tqdm", name="tqdm")
class LDMSampler:
def __init__(self) -> None:
super().__init__()
@torch.no_grad()
def sampling_fn(
self,
input_noise: torch.Tensor,
autoencoder_model: nn.Module,
diffusion_model: nn.Module,
scheduler: nn.Module,
conditioning: torch.Tensor | None = None,
) -> torch.Tensor:
if has_tqdm:
progress_bar = tqdm(scheduler.timesteps)
else:
progress_bar = iter(scheduler.timesteps)
image = input_noise
if conditioning is not None:
cond_concat = conditioning.squeeze(1).unsqueeze(-1).unsqueeze(-1).unsqueeze(-1)
cond_concat = cond_concat.expand(list(cond_concat.shape[0:2]) + list(input_noise.shape[2:]))
for t in progress_bar:
with torch.no_grad():
if conditioning is not None:
input_t = torch.cat((image, cond_concat), dim=1)
else:
input_t = image
model_output = diffusion_model(
input_t, timesteps=torch.Tensor((t,)).to(input_noise.device).long(), context=conditioning
)
image, _ = scheduler.step(model_output, t, image)
with torch.no_grad():
with autocast():
sample = autoencoder_model.decode_stage_2_outputs(image)
return sample