unify dataset dir in different configs
Browse files- README.md +1 -5
- configs/inference_autoencoder.json +1 -1
- configs/metadata.json +2 -1
- docs/README.md +1 -5
README.md
CHANGED
@@ -27,11 +27,7 @@ An example result from inference is shown below:
|
|
27 |
**This is a demonstration network meant to just show the training process for this sort of network with MONAI. To achieve better performance, users need to use larger dataset like [Brats 2021](https://www.synapse.org/#!Synapse:syn25829067/wiki/610865) and have GPU with memory larger than 32G to enable larger networks and attention layers.**
|
28 |
|
29 |
## MONAI Generative Model Dependencies
|
30 |
-
[MONAI generative models](https://github.com/Project-MONAI/GenerativeModels)
|
31 |
-
```
|
32 |
-
pip install lpips==0.1.4
|
33 |
-
pip install git+https://github.com/Project-MONAI/GenerativeModels.git@0.2.1
|
34 |
-
```
|
35 |
|
36 |
## Data
|
37 |
The training data is BraTS 2016 and 2017 from the Medical Segmentation Decathalon. Users can find more details on the dataset (`Task01_BrainTumour`) at http://medicaldecathlon.com/.
|
|
|
27 |
**This is a demonstration network meant to just show the training process for this sort of network with MONAI. To achieve better performance, users need to use larger dataset like [Brats 2021](https://www.synapse.org/#!Synapse:syn25829067/wiki/610865) and have GPU with memory larger than 32G to enable larger networks and attention layers.**
|
28 |
|
29 |
## MONAI Generative Model Dependencies
|
30 |
+
This bundle requires to install [MONAI generative models](https://github.com/Project-MONAI/GenerativeModels).
|
|
|
|
|
|
|
|
|
31 |
|
32 |
## Data
|
33 |
The training data is BraTS 2016 and 2017 from the Medical Segmentation Decathalon. Users can find more details on the dataset (`Task01_BrainTumour`) at http://medicaldecathlon.com/.
|
configs/inference_autoencoder.json
CHANGED
@@ -6,7 +6,7 @@
|
|
6 |
],
|
7 |
"bundle_root": ".",
|
8 |
"model_dir": "$@bundle_root + '/models'",
|
9 |
-
"dataset_dir": "
|
10 |
"output_dir": "$@bundle_root + '/output'",
|
11 |
"create_output_dir": "$Path(@output_dir).mkdir(exist_ok=True)",
|
12 |
"device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')",
|
|
|
6 |
],
|
7 |
"bundle_root": ".",
|
8 |
"model_dir": "$@bundle_root + '/models'",
|
9 |
+
"dataset_dir": "/workspace/data/medical",
|
10 |
"output_dir": "$@bundle_root + '/output'",
|
11 |
"create_output_dir": "$Path(@output_dir).mkdir(exist_ok=True)",
|
12 |
"device": "$torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')",
|
configs/metadata.json
CHANGED
@@ -1,7 +1,8 @@
|
|
1 |
{
|
2 |
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_generator_ldm_20230507.json",
|
3 |
-
"version": "1.0.
|
4 |
"changelog": {
|
|
|
5 |
"1.0.1": "update dependency, update trained model weights",
|
6 |
"1.0.0": "Initial release"
|
7 |
},
|
|
|
1 |
{
|
2 |
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_generator_ldm_20230507.json",
|
3 |
+
"version": "1.0.2",
|
4 |
"changelog": {
|
5 |
+
"1.0.2": "unify dataset dir in different configs",
|
6 |
"1.0.1": "update dependency, update trained model weights",
|
7 |
"1.0.0": "Initial release"
|
8 |
},
|
docs/README.md
CHANGED
@@ -20,11 +20,7 @@ An example result from inference is shown below:
|
|
20 |
**This is a demonstration network meant to just show the training process for this sort of network with MONAI. To achieve better performance, users need to use larger dataset like [Brats 2021](https://www.synapse.org/#!Synapse:syn25829067/wiki/610865) and have GPU with memory larger than 32G to enable larger networks and attention layers.**
|
21 |
|
22 |
## MONAI Generative Model Dependencies
|
23 |
-
[MONAI generative models](https://github.com/Project-MONAI/GenerativeModels)
|
24 |
-
```
|
25 |
-
pip install lpips==0.1.4
|
26 |
-
pip install git+https://github.com/Project-MONAI/GenerativeModels.git@0.2.1
|
27 |
-
```
|
28 |
|
29 |
## Data
|
30 |
The training data is BraTS 2016 and 2017 from the Medical Segmentation Decathalon. Users can find more details on the dataset (`Task01_BrainTumour`) at http://medicaldecathlon.com/.
|
|
|
20 |
**This is a demonstration network meant to just show the training process for this sort of network with MONAI. To achieve better performance, users need to use larger dataset like [Brats 2021](https://www.synapse.org/#!Synapse:syn25829067/wiki/610865) and have GPU with memory larger than 32G to enable larger networks and attention layers.**
|
21 |
|
22 |
## MONAI Generative Model Dependencies
|
23 |
+
This bundle requires to install [MONAI generative models](https://github.com/Project-MONAI/GenerativeModels).
|
|
|
|
|
|
|
|
|
24 |
|
25 |
## Data
|
26 |
The training data is BraTS 2016 and 2017 from the Medical Segmentation Decathalon. Users can find more details on the dataset (`Task01_BrainTumour`) at http://medicaldecathlon.com/.
|