monai
medical
katielink commited on
Commit
dd84920
1 Parent(s): 9384dae

update dependency, update trained model weights

Browse files
README.md CHANGED
@@ -22,7 +22,7 @@ Please note that each user is responsible for checking the data source of the pr
22
 
23
  #### Example synthetic image
24
  An example result from inference is shown below:
25
- ![Example synthetic image](https://developer.download.nvidia.com/assets/Clara/Images/monai_brain_image_gen_ldm3d_example_generation.png)
26
 
27
  **This is a demonstration network meant to just show the training process for this sort of network with MONAI. To achieve better performance, users need to use larger dataset like [Brats 2021](https://www.synapse.org/#!Synapse:syn25829067/wiki/610865) and have GPU with memory larger than 32G to enable larger networks and attention layers.**
28
 
@@ -30,11 +30,7 @@ An example result from inference is shown below:
30
  [MONAI generative models](https://github.com/Project-MONAI/GenerativeModels) can be installed by
31
  ```
32
  pip install lpips==0.1.4
33
- git clone https://github.com/Project-MONAI/GenerativeModels.git
34
- cd GenerativeModels/
35
- git checkout f969c24f88d013dc0045fb7b2885a01fb219992b
36
- python setup.py install
37
- cd ..
38
  ```
39
 
40
  ## Data
@@ -78,7 +74,7 @@ The latent diffusion model was trained using the following configuration:
78
 
79
  #### Training Input
80
  - 8 channel noisy latent features
81
- - an int that indicates the time step
82
 
83
  #### Training Output
84
  8 channel predicted added noise
@@ -96,9 +92,9 @@ If you face memory issues with data loading, you can lower the caching rate `cac
96
  ## Performance
97
 
98
  #### Training Loss
99
- ![A graph showing the autoencoder training curve](https://developer.download.nvidia.com/assets/Clara/Images/monai_brain_image_gen_ldm3d_train_autoencoder_loss.png)
100
 
101
- ![A graph showing the latent diffusion training curve](https://developer.download.nvidia.com/assets/Clara/Images/monai_brain_image_gen_ldm3d_train_diffusion_loss.png)
102
 
103
  ## MONAI Bundle Commands
104
 
 
22
 
23
  #### Example synthetic image
24
  An example result from inference is shown below:
25
+ ![Example synthetic image](https://developer.download.nvidia.com/assets/Clara/Images/monai_brain_image_gen_ldm3d_example_generation_v2.png)
26
 
27
  **This is a demonstration network meant to just show the training process for this sort of network with MONAI. To achieve better performance, users need to use larger dataset like [Brats 2021](https://www.synapse.org/#!Synapse:syn25829067/wiki/610865) and have GPU with memory larger than 32G to enable larger networks and attention layers.**
28
 
 
30
  [MONAI generative models](https://github.com/Project-MONAI/GenerativeModels) can be installed by
31
  ```
32
  pip install lpips==0.1.4
33
+ pip install git+https://github.com/Project-MONAI/GenerativeModels.git@0.2.1
 
 
 
 
34
  ```
35
 
36
  ## Data
 
74
 
75
  #### Training Input
76
  - 8 channel noisy latent features
77
+ - a long int that indicates the time step
78
 
79
  #### Training Output
80
  8 channel predicted added noise
 
92
  ## Performance
93
 
94
  #### Training Loss
95
+ ![A graph showing the autoencoder training curve](https://developer.download.nvidia.com/assets/Clara/Images/monai_brain_image_gen_ldm3d_train_autoencoder_loss_v2.png)
96
 
97
+ ![A graph showing the latent diffusion training curve](https://developer.download.nvidia.com/assets/Clara/Images/monai_brain_image_gen_ldm3d_train_diffusion_loss_v2.png)
98
 
99
  ## MONAI Bundle Commands
100
 
configs/metadata.json CHANGED
@@ -1,7 +1,8 @@
1
  {
2
  "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_generator_ldm_20230507.json",
3
- "version": "1.0.0",
4
  "changelog": {
 
5
  "1.0.0": "Initial release"
6
  },
7
  "monai_version": "1.2.0rc5",
 
1
  {
2
  "schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_generator_ldm_20230507.json",
3
+ "version": "1.0.1",
4
  "changelog": {
5
+ "1.0.1": "update dependency, update trained model weights",
6
  "1.0.0": "Initial release"
7
  },
8
  "monai_version": "1.2.0rc5",
docs/README.md CHANGED
@@ -15,7 +15,7 @@ Please note that each user is responsible for checking the data source of the pr
15
 
16
  #### Example synthetic image
17
  An example result from inference is shown below:
18
- ![Example synthetic image](https://developer.download.nvidia.com/assets/Clara/Images/monai_brain_image_gen_ldm3d_example_generation.png)
19
 
20
  **This is a demonstration network meant to just show the training process for this sort of network with MONAI. To achieve better performance, users need to use larger dataset like [Brats 2021](https://www.synapse.org/#!Synapse:syn25829067/wiki/610865) and have GPU with memory larger than 32G to enable larger networks and attention layers.**
21
 
@@ -23,11 +23,7 @@ An example result from inference is shown below:
23
  [MONAI generative models](https://github.com/Project-MONAI/GenerativeModels) can be installed by
24
  ```
25
  pip install lpips==0.1.4
26
- git clone https://github.com/Project-MONAI/GenerativeModels.git
27
- cd GenerativeModels/
28
- git checkout f969c24f88d013dc0045fb7b2885a01fb219992b
29
- python setup.py install
30
- cd ..
31
  ```
32
 
33
  ## Data
@@ -71,7 +67,7 @@ The latent diffusion model was trained using the following configuration:
71
 
72
  #### Training Input
73
  - 8 channel noisy latent features
74
- - an int that indicates the time step
75
 
76
  #### Training Output
77
  8 channel predicted added noise
@@ -89,9 +85,9 @@ If you face memory issues with data loading, you can lower the caching rate `cac
89
  ## Performance
90
 
91
  #### Training Loss
92
- ![A graph showing the autoencoder training curve](https://developer.download.nvidia.com/assets/Clara/Images/monai_brain_image_gen_ldm3d_train_autoencoder_loss.png)
93
 
94
- ![A graph showing the latent diffusion training curve](https://developer.download.nvidia.com/assets/Clara/Images/monai_brain_image_gen_ldm3d_train_diffusion_loss.png)
95
 
96
  ## MONAI Bundle Commands
97
 
 
15
 
16
  #### Example synthetic image
17
  An example result from inference is shown below:
18
+ ![Example synthetic image](https://developer.download.nvidia.com/assets/Clara/Images/monai_brain_image_gen_ldm3d_example_generation_v2.png)
19
 
20
  **This is a demonstration network meant to just show the training process for this sort of network with MONAI. To achieve better performance, users need to use larger dataset like [Brats 2021](https://www.synapse.org/#!Synapse:syn25829067/wiki/610865) and have GPU with memory larger than 32G to enable larger networks and attention layers.**
21
 
 
23
  [MONAI generative models](https://github.com/Project-MONAI/GenerativeModels) can be installed by
24
  ```
25
  pip install lpips==0.1.4
26
+ pip install git+https://github.com/Project-MONAI/GenerativeModels.git@0.2.1
 
 
 
 
27
  ```
28
 
29
  ## Data
 
67
 
68
  #### Training Input
69
  - 8 channel noisy latent features
70
+ - a long int that indicates the time step
71
 
72
  #### Training Output
73
  8 channel predicted added noise
 
85
  ## Performance
86
 
87
  #### Training Loss
88
+ ![A graph showing the autoencoder training curve](https://developer.download.nvidia.com/assets/Clara/Images/monai_brain_image_gen_ldm3d_train_autoencoder_loss_v2.png)
89
 
90
+ ![A graph showing the latent diffusion training curve](https://developer.download.nvidia.com/assets/Clara/Images/monai_brain_image_gen_ldm3d_train_diffusion_loss_v2.png)
91
 
92
  ## MONAI Bundle Commands
93
 
models/model.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:d780cd5fff4ec886226c5407391a5906c45e388c5d02efbf20da8729b7513e19
3
- size 765042309
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4af4a27015291c0a6390b45b0d39e4d54924c2250cadd6d5c1bb9717d76a26fd
3
+ size 765020741
models/model_autoencoder.pt CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a788c35df8e6d7b8c5baf2108bfc6e105a1e6685dfbf564d8d07a66194de8727
3
  size 84050405
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:85ec0986beb902b93beb5e27ea5c39429e8ae02c3bde8ca581bef0cac83014bc
3
  size 84050405
models/model_autoencoder.ts CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:39fa19c3e4cd35298337ad4dd8684961d55539a7cd3e29155e12731b254aca3f
3
- size 84147155
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:794871bdc4e4fb545d0f6999456376cf6caa1534b6271be4916e5f33cf80e3ce
3
+ size 84141341