|
{ |
|
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json", |
|
"version": "0.3.7", |
|
"changelog": { |
|
"0.3.7": "re-train model with updated dints implementation", |
|
"0.3.6": "black autofix format and add name tag", |
|
"0.3.5": "restructure readme to match updated template", |
|
"0.3.4": "correct typos", |
|
"0.3.3": "update learning rate and readme", |
|
"0.3.2": "update to use monai 1.0.1", |
|
"0.3.1": "fix license Copyright error", |
|
"0.3.0": "update license files", |
|
"0.2.0": "unify naming", |
|
"0.1.1": "fix data type issue in searching/training configurations", |
|
"0.1.0": "complete the model package", |
|
"0.0.1": "initialize the model package structure" |
|
}, |
|
"monai_version": "1.2.0rc4", |
|
"pytorch_version": "1.13.1", |
|
"numpy_version": "1.22.2", |
|
"optional_packages_version": { |
|
"fire": "0.4.0", |
|
"nibabel": "4.0.1", |
|
"pytorch-ignite": "0.4.9" |
|
}, |
|
"name": "Pancreas CT DiNTS segmentation", |
|
"task": "Neural architecture search on pancreas CT segmentation", |
|
"description": "Searched architectures for volumetric (3D) segmentation of the pancreas from CT image", |
|
"authors": "MONAI team", |
|
"copyright": "Copyright (c) MONAI Consortium", |
|
"data_source": "Task07_Pancreas.tar from http://medicaldecathlon.com/", |
|
"data_type": "nibabel", |
|
"image_classes": "single channel data, intensity scaled to [0, 1]", |
|
"label_classes": "single channel data, 1 is pancreas, 2 is pancreatic tumor, 0 is everything else", |
|
"pred_classes": "3 channels OneHot data, channel 1 is pancreas, channel 2 is pancreatic tumor, channel 0 is background", |
|
"eval_metrics": { |
|
"mean_dice": 0.62 |
|
}, |
|
"intended_use": "This is an example, not to be used for diagnostic purposes", |
|
"references": [ |
|
"He, Y., Yang, D., Roth, H., Zhao, C. and Xu, D., 2021. Dints: Differentiable neural network topology search for 3d medical image segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 5841-5850)." |
|
], |
|
"network_data_format": { |
|
"inputs": { |
|
"image": { |
|
"type": "image", |
|
"format": "hounsfield", |
|
"modality": "CT", |
|
"num_channels": 1, |
|
"spatial_shape": [ |
|
96, |
|
96, |
|
96 |
|
], |
|
"dtype": "float32", |
|
"value_range": [ |
|
0, |
|
1 |
|
], |
|
"is_patch_data": true, |
|
"channel_def": { |
|
"0": "image" |
|
} |
|
} |
|
}, |
|
"outputs": { |
|
"pred": { |
|
"type": "image", |
|
"format": "segmentation", |
|
"num_channels": 3, |
|
"spatial_shape": [ |
|
96, |
|
96, |
|
96 |
|
], |
|
"dtype": "float32", |
|
"value_range": [ |
|
0, |
|
1, |
|
2 |
|
], |
|
"is_patch_data": true, |
|
"channel_def": { |
|
"0": "background", |
|
"1": "pancreas", |
|
"2": "pancreatic tumor" |
|
} |
|
} |
|
} |
|
} |
|
} |
|
|