monai
medical
katielink's picture
re-train model with updated dints implementation
49f392e
raw
history blame
3.45 kB
{
"schema": "https://github.com/Project-MONAI/MONAI-extra-test-data/releases/download/0.8.1/meta_schema_20220324.json",
"version": "0.3.7",
"changelog": {
"0.3.7": "re-train model with updated dints implementation",
"0.3.6": "black autofix format and add name tag",
"0.3.5": "restructure readme to match updated template",
"0.3.4": "correct typos",
"0.3.3": "update learning rate and readme",
"0.3.2": "update to use monai 1.0.1",
"0.3.1": "fix license Copyright error",
"0.3.0": "update license files",
"0.2.0": "unify naming",
"0.1.1": "fix data type issue in searching/training configurations",
"0.1.0": "complete the model package",
"0.0.1": "initialize the model package structure"
},
"monai_version": "1.2.0rc4",
"pytorch_version": "1.13.1",
"numpy_version": "1.22.2",
"optional_packages_version": {
"fire": "0.4.0",
"nibabel": "4.0.1",
"pytorch-ignite": "0.4.9"
},
"name": "Pancreas CT DiNTS segmentation",
"task": "Neural architecture search on pancreas CT segmentation",
"description": "Searched architectures for volumetric (3D) segmentation of the pancreas from CT image",
"authors": "MONAI team",
"copyright": "Copyright (c) MONAI Consortium",
"data_source": "Task07_Pancreas.tar from http://medicaldecathlon.com/",
"data_type": "nibabel",
"image_classes": "single channel data, intensity scaled to [0, 1]",
"label_classes": "single channel data, 1 is pancreas, 2 is pancreatic tumor, 0 is everything else",
"pred_classes": "3 channels OneHot data, channel 1 is pancreas, channel 2 is pancreatic tumor, channel 0 is background",
"eval_metrics": {
"mean_dice": 0.62
},
"intended_use": "This is an example, not to be used for diagnostic purposes",
"references": [
"He, Y., Yang, D., Roth, H., Zhao, C. and Xu, D., 2021. Dints: Differentiable neural network topology search for 3d medical image segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (pp. 5841-5850)."
],
"network_data_format": {
"inputs": {
"image": {
"type": "image",
"format": "hounsfield",
"modality": "CT",
"num_channels": 1,
"spatial_shape": [
96,
96,
96
],
"dtype": "float32",
"value_range": [
0,
1
],
"is_patch_data": true,
"channel_def": {
"0": "image"
}
}
},
"outputs": {
"pred": {
"type": "image",
"format": "segmentation",
"num_channels": 3,
"spatial_shape": [
96,
96,
96
],
"dtype": "float32",
"value_range": [
0,
1,
2
],
"is_patch_data": true,
"channel_def": {
"0": "background",
"1": "pancreas",
"2": "pancreatic tumor"
}
}
}
}
}