monai
medical
File size: 7,403 Bytes
7c9464b
 
 
 
 
3c67af2
7c9464b
 
3fbe98e
 
7c9464b
 
3fbe98e
b4160b7
7c9464b
3fbe98e
 
 
 
 
 
 
7c9464b
 
b4160b7
 
 
 
 
 
 
8945a3b
 
b4160b7
4528beb
 
 
 
c3db148
7c9464b
3fbe98e
 
 
7c9464b
3fbe98e
 
 
 
7c9464b
3fbe98e
03bfead
7c9464b
3fbe98e
03bfead
7c9464b
3fbe98e
03bfead
7c9464b
3dab4bc
e430b14
3dab4bc
 
 
e430b14
 
3dab4bc
76a9414
 
 
 
 
 
 
 
e430b14
 
3dab4bc
 
 
 
 
 
e430b14
3dab4bc
 
3fbe98e
 
b4160b7
3fbe98e
b4160b7
3fbe98e
7c9464b
 
895373f
7c9464b
 
c3db148
 
 
 
 
 
3fbe98e
7c9464b
 
895373f
7c9464b
 
3fbe98e
836940c
3fbe98e
7c9464b
 
895373f
7c9464b
 
3fbe98e
3c67af2
 
895373f
3c67af2
 
3fbe98e
7c9464b
 
895373f
7c9464b
 
3dab4bc
 
 
e430b14
3dab4bc
 
46c704b
99d4084
 
 
 
 
7c9464b
 
 
 
3c67af2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
---
tags:
- monai
- medical
library_name: monai
license: apache-2.0
---
# Model Overview
A pre-trained model for volumetric (3D) segmentation of the spleen from CT images.

This model is trained using the runner-up [1] awarded pipeline of the "Medical Segmentation Decathlon Challenge 2018" using the UNet architecture [2] with 32 training images and 9 validation images.

![model workflow](https://developer.download.nvidia.com/assets/Clara/Images/clara_pt_spleen_ct_segmentation_workflow.png)

## Data
The training dataset is the Spleen Task from the Medical Segmentation Decathalon. Users can find more details on the datasets at http://medicaldecathlon.com/.

- Target: Spleen
- Modality: CT
- Size: 61 3D volumes (41 Training + 20 Testing)
- Source: Memorial Sloan Kettering Cancer Center
- Challenge: Large-ranging foreground size

## Training configuration
The segmentation of spleen region is formulated as the voxel-wise binary classification. Each voxel is predicted as either foreground (spleen) or background. And the model is optimized with gradient descent method minimizing Dice + cross entropy loss between the predicted mask and ground truth segmentation.

The training was performed with the following:

- GPU: at least 12GB of GPU memory
- Actual Model Input: 96 x 96 x 96
- AMP: True
- Optimizer: Novograd
- Learning Rate: 0.002
- Loss: DiceCELoss
- Dataset Manager: CacheDataset

### Memory Consumption Warning

If you face memory issues with CacheDataset, you can either switch to a regular Dataset class or lower the caching rate `cache_rate` in the configurations within range [0, 1] to minimize the System RAM requirements.

### Input
One channel
- CT image

### Output
Two channels
- Label 1: spleen
- Label 0: everything else

## Performance
Dice score is used for evaluating the performance of the model. This model achieves a mean dice score of 0.961.

#### Training Loss
![A graph showing the training loss over 1260 epochs (10080 iterations).](https://developer.download.nvidia.com/assets/Clara/Images/monai_spleen_ct_segmentation_train.png)

#### Validation Dice
![A graph showing the validation mean Dice over 1260 epochs.](https://developer.download.nvidia.com/assets/Clara/Images/monai_spleen_ct_segmentation_val.png)

#### TensorRT speedup
The `spleen_ct_segmentation` bundle supports acceleration with TensorRT through the ONNX-TensorRT method. The table below displays the speedup ratios observed on an A100 80G GPU.

| method | torch_fp32(ms) | torch_amp(ms) | trt_fp32(ms) | trt_fp16(ms) | speedup amp | speedup fp32 | speedup fp16 | amp vs fp16|
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| model computation | 6.46 | 4.48 | 2.52 | 1.96 | 1.44 | 2.56 | 3.30 | 2.29 |
| end2end | 1268.03 | 1152.40 | 1137.40 | 1114.25 | 1.10 | 1.11 | 1.14 | 1.03 |

Where:
- `model computation` means the speedup ratio of model's inference with a random input without preprocessing and postprocessing
- `end2end` means run the bundle end-to-end with the TensorRT based model.
- `torch_fp32` and `torch_amp` are for the PyTorch models with or without `amp` mode.
- `trt_fp32` and `trt_fp16` are for the TensorRT based models converted in corresponding precision.
- `speedup amp`, `speedup fp32` and `speedup fp16` are the speedup ratios of corresponding models versus the PyTorch float32 model
- `amp vs fp16` is the speedup ratio between the PyTorch amp model and the TensorRT float16 based model.

Currently, the only available method to accelerate this model is through ONNX-TensorRT. However, the Torch-TensorRT method is under development and will be available in the near future.

This result is benchmarked under:
 - TensorRT: 8.5.3+cuda11.8
 - Torch-TensorRT Version: 1.4.0
 - CPU Architecture: x86-64
 - OS: ubuntu 20.04
 - Python version:3.8.10
 - CUDA version: 12.1
 - GPU models and configuration: A100 80G

## MONAI Bundle Commands
In addition to the Pythonic APIs, a few command line interfaces (CLI) are provided to interact with the bundle. The CLI supports flexible use cases, such as overriding configs at runtime and predefining arguments in a file.

For more details usage instructions, visit the [MONAI Bundle Configuration Page](https://docs.monai.io/en/latest/config_syntax.html).

#### Execute training:

```
python -m monai.bundle run --config_file configs/train.json
```

Please note that if the default dataset path is not modified with the actual path in the bundle config files, you can also override it by using `--dataset_dir`:

```
python -m monai.bundle run --config_file configs/train.json --dataset_dir <actual dataset path>
```

#### Override the `train` config to execute multi-GPU training:

```
torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run --config_file "['configs/train.json','configs/multi_gpu_train.json']"
```

Please note that the distributed training-related options depend on the actual running environment; thus, users may need to remove `--standalone`, modify `--nnodes`, or do some other necessary changes according to the machine used. For more details, please refer to [pytorch's official tutorial](https://pytorch.org/tutorials/intermediate/ddp_tutorial.html).

#### Override the `train` config to execute evaluation with the trained model:

```
python -m monai.bundle run --config_file "['configs/train.json','configs/evaluate.json']"
```

#### Override the `train` config and `evaluate` config to execute multi-GPU evaluation:

```
torchrun --standalone --nnodes=1 --nproc_per_node=2 -m monai.bundle run --config_file "['configs/train.json','configs/evaluate.json','configs/multi_gpu_evaluate.json']"
```

#### Execute inference:

```
python -m monai.bundle run --config_file configs/inference.json
```

#### Export checkpoint to TensorRT based models with fp32 or fp16 precision:

```
python -m monai.bundle trt_export --net_id network_def --filepath models/model_trt.ts --ckpt_file models/model.pt --meta_file configs/metadata.json --config_file configs/inference.json --precision <fp32/fp16> --dynamic_batchsize "[1, 4, 8]" --use_onnx "True" --use_trace "True"
```

#### Execute inference with the TensorRT model:

```
python -m monai.bundle run --config_file "['configs/inference.json', 'configs/inference_trt.json']"
```

# References
[1] Xia, Yingda, et al. "3D Semi-Supervised Learning with Uncertainty-Aware Multi-View Co-Training." arXiv preprint arXiv:1811.12506 (2018). https://arxiv.org/abs/1811.12506.

[2] Kerfoot E., Clough J., Oksuz I., Lee J., King A.P., Schnabel J.A. (2019) Left-Ventricle Quantification Using Residual U-Net. In: Pop M. et al. (eds) Statistical Atlases and Computational Models of the Heart. Atrial Segmentation and LV Quantification Challenges. STACOM 2018. Lecture Notes in Computer Science, vol 11395. Springer, Cham. https://doi.org/10.1007/978-3-030-12029-0_40

# License
Copyright (c) MONAI Consortium

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.