metadata
library_name: transformers
license: apache-2.0
base_model: t5-small
tags:
- summarization
- generated_from_trainer
metrics:
- rouge
model-index:
- name: t5-small-finetuned-cnn-news
results: []
t5-small-finetuned-cnn-news
This model is a fine-tuned version of t5-small on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 2.3455
- Rouge1: 25.2386
- Rouge2: 9.5343
- Rougel: 20.6686
- Rougelsum: 23.2614
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.00056
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum |
---|---|---|---|---|---|---|---|
1.1393 | 1.0 | 718 | 2.4712 | 23.3266 | 8.6693 | 18.9609 | 21.406 |
1.7054 | 2.0 | 1436 | 2.2697 | 24.3337 | 9.4775 | 20.1514 | 22.5425 |
1.5479 | 3.0 | 2154 | 2.2868 | 24.3861 | 9.0245 | 20.0315 | 22.582 |
1.4377 | 4.0 | 2872 | 2.3311 | 25.0473 | 9.4761 | 20.4587 | 23.0242 |
1.3533 | 5.0 | 3590 | 2.3455 | 25.2386 | 9.5343 | 20.6686 | 23.2614 |
Framework versions
- Transformers 4.46.2
- Pytorch 2.5.1+cu121
- Datasets 3.1.0
- Tokenizers 0.20.3