KoELECTRA v3 (Base Discriminator)
Pretrained ELECTRA Language Model for Korean (koelectra-base-v3-discriminator
)
For more detail, please see original repository.
Usage
Load model and tokenizer
>>> from transformers import ElectraModel, ElectraTokenizer
>>> model = ElectraModel.from_pretrained("monologg/koelectra-base-v3-discriminator")
>>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-v3-discriminator")
Tokenizer example
>>> from transformers import ElectraTokenizer
>>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-v3-discriminator")
>>> tokenizer.tokenize("[CLS] 한국어 ELECTRA를 공유합니다. [SEP]")
['[CLS]', '한국어', 'EL', '##EC', '##TRA', '##를', '공유', '##합니다', '.', '[SEP]']
>>> tokenizer.convert_tokens_to_ids(['[CLS]', '한국어', 'EL', '##EC', '##TRA', '##를', '공유', '##합니다', '.', '[SEP]'])
[2, 11229, 29173, 13352, 25541, 4110, 7824, 17788, 18, 3]
Example using ElectraForPreTraining
import torch
from transformers import ElectraForPreTraining, ElectraTokenizer
discriminator = ElectraForPreTraining.from_pretrained("monologg/koelectra-base-v3-discriminator")
tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-v3-discriminator")
sentence = "나는 방금 밥을 먹었다."
fake_sentence = "나는 내일 밥을 먹었다."
fake_tokens = tokenizer.tokenize(fake_sentence)
fake_inputs = tokenizer.encode(fake_sentence, return_tensors="pt")
discriminator_outputs = discriminator(fake_inputs)
predictions = torch.round((torch.sign(discriminator_outputs[0]) + 1) / 2)
print(list(zip(fake_tokens, predictions.tolist()[1:-1])))
- Downloads last month
- 13,482