monologg's picture
Update README.md
502d48f
---
language: ko
license: apache-2.0
tags:
- korean
---
# KoELECTRA v3 (Base Generator)
Pretrained ELECTRA Language Model for Korean (`koelectra-base-v3-generator`)
For more detail, please see [original repository](https://github.com/monologg/KoELECTRA/blob/master/README_EN.md).
## Usage
### Load model and tokenizer
```python
>>> from transformers import ElectraModel, ElectraTokenizer
>>> model = ElectraModel.from_pretrained("monologg/koelectra-base-v3-generator")
>>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-v3-generator")
```
### Tokenizer example
```python
>>> from transformers import ElectraTokenizer
>>> tokenizer = ElectraTokenizer.from_pretrained("monologg/koelectra-base-v3-generator")
>>> tokenizer.tokenize("[CLS] 한국어 ELECTRA를 공유합니다. [SEP]")
['[CLS]', '한국어', 'EL', '##EC', '##TRA', '##를', '공유', '##합니다', '.', '[SEP]']
>>> tokenizer.convert_tokens_to_ids(['[CLS]', '한국어', 'EL', '##EC', '##TRA', '##를', '공유', '##합니다', '.', '[SEP]'])
[2, 11229, 29173, 13352, 25541, 4110, 7824, 17788, 18, 3]
```
## Example using ElectraForMaskedLM
```python
from transformers import pipeline
fill_mask = pipeline(
"fill-mask",
model="monologg/koelectra-base-v3-generator",
tokenizer="monologg/koelectra-base-v3-generator"
)
print(fill_mask("나는 {} 밥을 먹었다.".format(fill_mask.tokenizer.mask_token)))
```