|
--- |
|
library_name: peft |
|
base_model: google/vit-large-patch16-224 |
|
--- |
|
|
|
## LoRA Image Binary Classification LoRA adapter |
|
|
|
Trained on APTOS 2019 Kaggle competition for identifying diabetic retinopathy. In this case I've modified the problem |
|
to binary classifier (diagnosis=0 vs. all others; 50-50% distribution in training data) |
|
|
|
Base Model: [google/vit-large-patch16-224](https://huggingface.co/google/vit-large-patch16-224) |
|
|
|
Dataset: https://www.kaggle.com/c/aptos2019-blindness-detection - fundus images of the back of the eye, and diabetic retinopathy score |
|
|
|
Training notebook: https://colab.research.google.com/drive/1TVsUyyou87E26Sz40CdBH3CzWoVckgtq?usp=sharing |
|
|
|
On 10% held-out of training data: accuracy 98% |
|
|
|
- PEFT 0.5.0 |
|
|
|
PEFT Image classifier inference / [Gradio app](https://huggingface.co/spaces/monsoon-nlp/eyegazer-demo/blob/main/app.py) |
|
|
|
```python |
|
from peft import PeftModel |
|
from PIL import Image |
|
from transformers import AutoImageProcessor, AutoModelForImageClassification |
|
|
|
from torchvision.transforms import ( |
|
CenterCrop, |
|
Compose, |
|
Normalize, |
|
RandomHorizontalFlip, |
|
RandomResizedCrop, |
|
Resize, |
|
ToTensor, |
|
) |
|
|
|
model_name = 'google/vit-large-patch16-224' |
|
adapter = 'monsoon-nlp/eyegazer-vit-binary' |
|
|
|
image_processor = AutoImageProcessor.from_pretrained(model_name) |
|
|
|
normalize = Normalize(mean=image_processor.image_mean, std=image_processor.image_std) |
|
train_transforms = Compose( |
|
[ |
|
RandomResizedCrop(image_processor.size["height"]), |
|
RandomHorizontalFlip(), |
|
ToTensor(), |
|
normalize, |
|
] |
|
) |
|
|
|
val_transforms = Compose( |
|
[ |
|
Resize(image_processor.size["height"]), |
|
CenterCrop(image_processor.size["height"]), |
|
ToTensor(), |
|
normalize, |
|
] |
|
) |
|
|
|
model = AutoModelForImageClassification.from_pretrained( |
|
model_name, |
|
ignore_mismatched_sizes=True, |
|
num_labels=2, |
|
) |
|
|
|
lora_model = PeftModel.from_pretrained(model, adapter) |
|
|
|
img = Image.open("sample.png") |
|
pimg = val_transforms(img.convert("RGB")) |
|
batch = pimg.unsqueeze(0) |
|
op = lora_model(batch) |
|
vals = op.logits.tolist()[0] |
|
|
|
if vals[0] > vals[1]: |
|
return "Predicted unaffected" |
|
else: |
|
return "Predicted affected to some degree" |
|
``` |
|
|
|
## Future goals |
|
|
|
- More documentation |
|
- Modify loss for regression on 0-4 score |