metadata
license: apache-2.0
library_name: peft
tags:
- falcon
- falcon-7b
- code
- code instruct
- instruct code
- code alpaca
- python code
- code copilot
- copilot
- python coding assistant
- coding assistant
datasets:
- iamtarun/python_code_instructions_18k_alpaca
base_model: tiiuae/falcon-7b
Training procedure
We finetuned Falcon-7B LLM on Python-Code-Instructions Dataset (iamtarun/python_code_instructions_18k_alpaca) for 10 epochs or ~ 23,000 steps using MonsterAPI no-code LLM finetuner.
The dataset contains problem descriptions and code in python language. This dataset is taken from sahil2801/code_instructions_120k, which adds a prompt column in alpaca style.
The finetuning session got completed in 7.3 hours and costed us only $17.5
for the entire finetuning run!
Hyperparameters & Run details:
- Model Path: tiiuae/falcon-7b
- Dataset: iamtarun/python_code_instructions_18k_alpaca
- Learning rate: 0.0002
- Number of epochs: 10
- Data split: Training: 95% / Validation: 5%
- Gradient accumulation steps: 1
Framework versions
- PEFT 0.4.0