PEFT
code
instruct
llama2
Files changed (1) hide show
  1. README.md +44 -3
README.md CHANGED
@@ -1,10 +1,51 @@
1
  ---
2
  library_name: peft
 
 
 
 
 
 
 
3
  license: apache-2.0
4
  ---
5
- ## Training procedure
6
 
7
- ### Framework versions
8
 
 
9
 
10
- - PEFT 0.5.0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  library_name: peft
3
+ tags:
4
+ - code
5
+ - instruct
6
+ - gpt2
7
+ datasets:
8
+ - HuggingFaceH4/no_robots
9
+ base_model: gpt2
10
  license: apache-2.0
11
  ---
 
12
 
13
+ ### Finetuning Overview:
14
 
15
+ **Model Used:** gpt2
16
 
17
+ **Dataset:** HuggingFaceH4/no_robots
18
+
19
+ #### Dataset Insights:
20
+
21
+ [No Robots](https://huggingface.co/datasets/HuggingFaceH4/no_robots) is a high-quality dataset of 10,000 instructions and demonstrations created by skilled human annotators. This data can be used for supervised fine-tuning (SFT) to make language models follow instructions better.
22
+
23
+ #### Finetuning Details:
24
+
25
+ With the utilization of [MonsterAPI](https://monsterapi.ai)'s [LLM finetuner](https://docs.monsterapi.ai/fine-tune-a-large-language-model-llm), this finetuning:
26
+
27
+ - Was achieved with great cost-effectiveness.
28
+ - Completed in a total duration of 3mins 40s for 1 epoch using an A6000 48GB GPU.
29
+ - Costed `$0.101` for the entire epoch.
30
+
31
+ #### Hyperparameters & Additional Details:
32
+
33
+ - **Epochs:** 1
34
+ - **Cost Per Epoch:** $0.101
35
+ - **Total Finetuning Cost:** $0.101
36
+ - **Model Path:** gpt2
37
+ - **Learning Rate:** 0.0002
38
+ - **Data Split:** 100% train
39
+ - **Gradient Accumulation Steps:** 4
40
+ - **lora r:** 32
41
+ - **lora alpha:** 64
42
+
43
+ #### Prompt Structure
44
+ ```
45
+ <|system|> <|endoftext|> <|user|> [USER PROMPT]<|endoftext|> <|assistant|> [ASSISTANT ANSWER] <|endoftext|>
46
+ ```
47
+ #### Training loss :
48
+
49
+ ![training loss](https://cdn-uploads.huggingface.co/production/uploads/63ba46aa0a9866b28cb19a14/9bgb518kFwtDsFtrHzmTu.png)
50
+
51
+ license: apache-2.0