Update README.md
#2
by
souvik0306
- opened
README.md
CHANGED
@@ -1,74 +1,43 @@
|
|
1 |
---
|
2 |
library_name: peft
|
3 |
-
license: apache-2.0
|
4 |
-
---
|
5 |
-
## Training procedure
|
6 |
-
|
7 |
-
|
8 |
-
The following `bitsandbytes` quantization config was used during training:
|
9 |
-
- quant_method: bitsandbytes
|
10 |
-
- load_in_8bit: False
|
11 |
-
- load_in_4bit: True
|
12 |
-
- llm_int8_threshold: 6.0
|
13 |
-
- llm_int8_skip_modules: None
|
14 |
-
- llm_int8_enable_fp32_cpu_offload: False
|
15 |
-
- llm_int8_has_fp16_weight: False
|
16 |
-
- bnb_4bit_quant_type: nf4
|
17 |
-
- bnb_4bit_use_double_quant: True
|
18 |
-
- bnb_4bit_compute_dtype: bfloat16
|
19 |
-
### Framework versions
|
20 |
-
|
21 |
-
|
22 |
-
- PEFT 0.5.0
|
23 |
-
|
24 |
-
- ---
|
25 |
-
library_name: peft
|
26 |
tags:
|
27 |
- code
|
28 |
- instruct
|
29 |
-
-
|
30 |
datasets:
|
31 |
-
-
|
32 |
-
base_model:
|
33 |
license: apache-2.0
|
34 |
---
|
35 |
|
36 |
### Finetuning Overview:
|
37 |
|
38 |
-
**Model Used:**
|
39 |
|
40 |
-
**Dataset:**
|
41 |
|
42 |
#### Dataset Insights:
|
43 |
|
44 |
-
[
|
45 |
|
46 |
#### Finetuning Details:
|
47 |
|
48 |
-
With the utilization of [MonsterAPI](https://monsterapi.ai)'s [LLM finetuner](https://
|
49 |
|
50 |
- Was achieved with great cost-effectiveness.
|
51 |
-
- Completed in a total duration of
|
52 |
-
- Costed `$
|
53 |
|
54 |
#### Hyperparameters & Additional Details:
|
55 |
|
56 |
- **Epochs:** 1
|
57 |
-
- **Cost Per Epoch:** $
|
58 |
-
- **
|
59 |
-
- **Model Path:** gpt2
|
60 |
- **Learning Rate:** 0.0002
|
61 |
- **Data Split:** 100% train
|
62 |
-
- **Gradient Accumulation Steps:**
|
63 |
-
- **lora r:**
|
64 |
-
- **lora alpha:**
|
65 |
-
|
66 |
-
#### Prompt Structure
|
67 |
-
```
|
68 |
-
<|system|> <|endoftext|> <|user|> [USER PROMPT]<|endoftext|> <|assistant|> [ASSISTANT ANSWER] <|endoftext|>
|
69 |
-
```
|
70 |
-
#### Training loss :
|
71 |
-
|
72 |
-
![training loss](https://cdn-uploads.huggingface.co/production/uploads/63ba46aa0a9866b28cb19a14/9bgb518kFwtDsFtrHzmTu.png)
|
73 |
|
|
|
74 |
license: apache-2.0
|
|
|
1 |
---
|
2 |
library_name: peft
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
tags:
|
4 |
- code
|
5 |
- instruct
|
6 |
+
- mistral
|
7 |
datasets:
|
8 |
+
- cognitivecomputations/dolphin-coder
|
9 |
+
base_model: mistralai/Mistral-7B-v0.1
|
10 |
license: apache-2.0
|
11 |
---
|
12 |
|
13 |
### Finetuning Overview:
|
14 |
|
15 |
+
**Model Used:** mistralai/Mistral-7B-v0.1
|
16 |
|
17 |
+
**Dataset:** cognitivecomputations/dolphin-coder
|
18 |
|
19 |
#### Dataset Insights:
|
20 |
|
21 |
+
[Dolphin-Coder](https://huggingface.co/datasets/cognitivecomputations/dolphin-coder) Dolphin-Coder dataset – a high-quality collection of 100,000+ coding questions and responses. It's perfect for supervised fine-tuning (SFT), and teaching language models to improve on coding-based tasks.
|
22 |
|
23 |
#### Finetuning Details:
|
24 |
|
25 |
+
With the utilization of [MonsterAPI](https://monsterapi.ai)'s [no-code LLM finetuner](https://monsterapi.ai/finetuning), this finetuning:
|
26 |
|
27 |
- Was achieved with great cost-effectiveness.
|
28 |
+
- Completed in a total duration of 15hr 36mins for 1 epochs using an A6000 48GB GPU.
|
29 |
+
- Costed `$31.51` for the entire 1 epoch.
|
30 |
|
31 |
#### Hyperparameters & Additional Details:
|
32 |
|
33 |
- **Epochs:** 1
|
34 |
+
- **Cost Per Epoch:** $31.51
|
35 |
+
- **Model Path:** mistralai/Mistral-7B-v0.1
|
|
|
36 |
- **Learning Rate:** 0.0002
|
37 |
- **Data Split:** 100% train
|
38 |
+
- **Gradient Accumulation Steps:** 64
|
39 |
+
- **lora r:** 64
|
40 |
+
- **lora alpha:** 16
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
42 |
+
---
|
43 |
license: apache-2.0
|