metadata
license: mit
Introduction
We introduce Motif, a new language model family of Moreh, specialized in Korean and English.
Motif-102B-Instruct is a chat model tuned from the base model Motif-102B.
Training Platform
- Motif-102B is trained on MoAI platform, with AMD's MI250 GPU.
- The MoAI platform simplifies scalable, cost efficient training of large-scale models across multiple nodes.
- The MoAI platform also supports various optimized and automated parallelization without any complex manual works.
- One can find more information on the MoAI Platform in https://moreh.io/product
- Or, contact us directly contact@moreh.io
Quick Usage
You can chat directly with our model Motif through our Model hub.
Details
More details will be provided in the upcoming technical report.
Release Date
2024.09.30
Benchmark Results
Model | KMMLU |
---|---|
GPT-4-base-0613** | 57.62 |
Llama3.1-70B-instruct * | 52.1 |
Motif-102B **+ | 58.25 |
Motif-102B-Instruct **+ | 57.98 |
β*β : Community reported
β**β : Measured by the authors
β+β : Indicates the model is specialized in Korean
How to use
Use with vLLM
- Minimum requirements: 4xA100 80GB GPUs
- Refer to this link to install vllm
from transformers import AutoTokenizer
from vllm import LLM, SamplingParams
# for minimum, we recommand using 4x A100 80GB GPUs for inference with vllm
# If you have more GPUs, change tensor parallel size to GPU numbers you can afford
model = LLM("moreh/Motif-100B-Instruct", tensor_parallel_size=4)
tokenizer = AutoTokenizer.from_pretrained("moreh/Motif-100B-Instruct")
messages = [
{"role": "system", "content": "You are a helpful assistant"},
{"role": "user", "content": "μ μΉμμμκ² λΉ
λ±
μ΄λ‘ μ κ°λ
μ μ€λͺ
ν΄λ³΄μΈμ"},
]
messages_batch = [tokenizer.apply_chat_template(conversation=messages, add_generation_prompt=True, tokenize=False)]
# vllm does not support generation_config of hf. So we have to set it like below
sampling_params = SamplingParams(max_tokens=512, temperature=0, repetition_penalty=1.0, stop_token_ids=[tokenizer.eos_token_id])
responses = model.generate(messages_batch, sampling_params=sampling_params)
print(responses[0].outputs[0].text)
Use with transformers
- Minimum requirements: 4xA100 80GB GPUs OR 4xAMD MI250 GPUs
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
model_id = "moreh/Motif-100B-Instruct"
# all generation configs are set in generation_configs.json
model = AutoModelForCausalLM.from_pretrained(model_id).cuda()
tokenizer = AutoTokenizer.from_pretrained(model_id)
messages = [
{"role": "system", "content": "You are a helpful assistant"},
{"role": "user", "content": "μ μΉμμμκ² λΉ
λ±
μ΄λ‘ μ κ°λ
μ μ€λͺ
ν΄λ³΄μΈμ"},
]
messages_batch = tokenizer.apply_chat_template(conversation=messages, add_generation_prompt=True, tokenize=False)
input_ids = tokenizer(messages_batch, padding=True, return_tensors='pt')['input_ids'].cuda()
outputs = model.generate(input_ids)