BGE base Financial Matryoshka
This is a sentence-transformers model finetuned from BAAI/bge-base-en-v1.5 on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: BAAI/bge-base-en-v1.5
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
- Training Dataset:
- json
- Language: en
- License: apache-2.0
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("moresearch/bge-base-financial-matryoshka")
# Run inference
sentences = [
'As of December 31, 2023, we employed about 113,200 full-time persons of whom approximately 62,400 were located outside the United States. In the United States, we employed approximately 50,800 full-time persons.',
'How many full-time employees were employed by the company as of December 31, 2023, and how are they distributed geographically?',
'What challenges do solar power system owners face with traditional string inverters?',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Information Retrieval
- Datasets:
dim_384
,dim_256
,dim_128
,dim_64
anddim_32
- Evaluated with
InformationRetrievalEvaluator
Metric | dim_384 | dim_256 | dim_128 | dim_64 | dim_32 |
---|---|---|---|---|---|
cosine_accuracy@1 | 0.7157 | 0.7157 | 0.7057 | 0.6729 | 0.5957 |
cosine_accuracy@3 | 0.8486 | 0.8486 | 0.8371 | 0.8129 | 0.7414 |
cosine_accuracy@5 | 0.8743 | 0.8786 | 0.8643 | 0.85 | 0.7829 |
cosine_accuracy@10 | 0.9171 | 0.9143 | 0.9086 | 0.8814 | 0.8314 |
cosine_precision@1 | 0.7157 | 0.7157 | 0.7057 | 0.6729 | 0.5957 |
cosine_precision@3 | 0.2829 | 0.2829 | 0.279 | 0.271 | 0.2471 |
cosine_precision@5 | 0.1749 | 0.1757 | 0.1729 | 0.17 | 0.1566 |
cosine_precision@10 | 0.0917 | 0.0914 | 0.0909 | 0.0881 | 0.0831 |
cosine_recall@1 | 0.7157 | 0.7157 | 0.7057 | 0.6729 | 0.5957 |
cosine_recall@3 | 0.8486 | 0.8486 | 0.8371 | 0.8129 | 0.7414 |
cosine_recall@5 | 0.8743 | 0.8786 | 0.8643 | 0.85 | 0.7829 |
cosine_recall@10 | 0.9171 | 0.9143 | 0.9086 | 0.8814 | 0.8314 |
cosine_ndcg@10 | 0.8199 | 0.8188 | 0.809 | 0.7829 | 0.7159 |
cosine_mrr@10 | 0.7885 | 0.7878 | 0.7771 | 0.7508 | 0.6788 |
cosine_map@100 | 0.7918 | 0.7912 | 0.7807 | 0.7551 | 0.684 |
Training Details
Training Dataset
json
- Dataset: json
- Size: 6,300 training samples
- Columns:
positive
andanchor
- Approximate statistics based on the first 1000 samples:
positive anchor type string string details - min: 7 tokens
- mean: 45.87 tokens
- max: 288 tokens
- min: 2 tokens
- mean: 20.32 tokens
- max: 41 tokens
- Samples:
positive anchor The company maintains a revolving credit facility that, unless extended, terminates on July 6, 2026.
What is the expiration date of the company's revolving credit facility, unless extended?
The management of Bank of America Corporation is responsible for establishing and maintaining adequate internal control over financial reporting. The Corporation’s internal control over financial reporting is designed to provide reasonable assurance about the reliability of financial reporting and the preparation of financial statements in accordance with accounting principles generally accepted in the United States of America. Management's responsibilities include maintaining records that, in reasonable detail, accurately and fairly reflect the transactions and dispositions of the assets of the Corporation; ensuring that transactions are recorded as necessary for the preparation of financial statements; and preventing or detecting unauthorized acquisition, use, or disposition of the Corporation’s assets that could have a material effect on the financial statements.
What is the role of Bank of America Corporation's management in relation to internal control over financial reporting?
In 2020, Gilead implemented multiple programs to train managers on inclusion and diversity topics and created strategies and initiatives focused on attracting, developing and retaining diverse talent and driving an inclusive culture in our workplace.
What initiatives has Gilead undertaken to promote workplace diversity?
- Loss:
MatryoshkaLoss
with these parameters:{ "loss": "MultipleNegativesRankingLoss", "matryoshka_dims": [ 768, 512, 256, 128, 64 ], "matryoshka_weights": [ 1, 1, 1, 1, 1 ], "n_dims_per_step": -1 }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: epochper_device_train_batch_size
: 32per_device_eval_batch_size
: 16gradient_accumulation_steps
: 16learning_rate
: 2e-05num_train_epochs
: 4lr_scheduler_type
: cosinewarmup_ratio
: 0.1bf16
: Truetf32
: Falseload_best_model_at_end
: Trueoptim
: adamw_torch_fusedbatch_sampler
: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: epochprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 16per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 16eval_accumulation_steps
: Nonetorch_empty_cache_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 4max_steps
: -1lr_scheduler_type
: cosinelr_scheduler_kwargs
: {}warmup_ratio
: 0.1warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Falselocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Trueignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torch_fusedoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseinclude_for_metrics
: []eval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falseuse_liger_kernel
: Falseeval_use_gather_object
: Falseaverage_tokens_across_devices
: Falseprompts
: Nonebatch_sampler
: no_duplicatesmulti_dataset_batch_sampler
: proportional
Training Logs
Epoch | Step | Training Loss | dim_384_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 | dim_32_cosine_ndcg@10 |
---|---|---|---|---|---|---|---|
0.8122 | 10 | 1.5733 | - | - | - | - | - |
0.9746 | 12 | - | 0.8075 | 0.8045 | 0.7876 | 0.7643 | 0.6844 |
1.6244 | 20 | 0.6549 | - | - | - | - | - |
1.9492 | 24 | - | 0.8188 | 0.8169 | 0.8035 | 0.7789 | 0.7107 |
2.4365 | 30 | 0.4373 | - | - | - | - | - |
2.9239 | 36 | - | 0.8210 | 0.8183 | 0.8079 | 0.7835 | 0.7161 |
3.2487 | 40 | 0.3951 | - | - | - | - | - |
3.8985 | 48 | - | 0.8199 | 0.8188 | 0.809 | 0.7829 | 0.7159 |
- The bold row denotes the saved checkpoint.
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.46.3
- PyTorch: 2.5.1+cu124
- Accelerate: 1.1.1
- Datasets: 3.1.0
- Tokenizers: 0.20.3
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MatryoshkaLoss
@misc{kusupati2024matryoshka,
title={Matryoshka Representation Learning},
author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
year={2024},
eprint={2205.13147},
archivePrefix={arXiv},
primaryClass={cs.LG}
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 0
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Model tree for moresearch/bge-base-financial-matryoshka
Base model
BAAI/bge-base-en-v1.5Evaluation results
- Cosine Accuracy@1 on dim 384self-reported0.716
- Cosine Accuracy@3 on dim 384self-reported0.849
- Cosine Accuracy@5 on dim 384self-reported0.874
- Cosine Accuracy@10 on dim 384self-reported0.917
- Cosine Precision@1 on dim 384self-reported0.716
- Cosine Precision@3 on dim 384self-reported0.283
- Cosine Precision@5 on dim 384self-reported0.175
- Cosine Precision@10 on dim 384self-reported0.092
- Cosine Recall@1 on dim 384self-reported0.716
- Cosine Recall@3 on dim 384self-reported0.849