moresearch commited on
Commit
d28da04
·
verified ·
1 Parent(s): 8e5b026

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": true,
4
+ "pooling_mode_mean_tokens": false,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,732 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - en
4
+ license: apache-2.0
5
+ tags:
6
+ - sentence-transformers
7
+ - sentence-similarity
8
+ - feature-extraction
9
+ - generated_from_trainer
10
+ - dataset_size:6300
11
+ - loss:MatryoshkaLoss
12
+ - loss:MultipleNegativesRankingLoss
13
+ base_model: BAAI/bge-base-en-v1.5
14
+ widget:
15
+ - source_sentence: Capital expenditures, which primarily reflected investments in
16
+ technical infrastructure, were $32.3 billion for the year ended December 31, 2023.
17
+ sentences:
18
+ - Where can you find the consolidated financial statements in the Annual Report
19
+ on Form 10-K?
20
+ - What were the total capital expenditures for Alphabet Inc. in 2023?
21
+ - How did Chevron's development strategy in the Permian Basin contribute to its
22
+ productivity?
23
+ - source_sentence: You can identify forward-looking statements by the use of forward-looking
24
+ terminology including “believes,” “expects,” “may,” “will,” “should,” “seeks,”
25
+ “intends,” “plans,” “pro forma,” “estimates,” “anticipates,” or the negative of
26
+ these words and phrases, other variations of these words and phrases or comparable
27
+ terminology.
28
+ sentences:
29
+ - What does the forward-looking terminology in financial documents imply?
30
+ - What seasons have higher domestic advertising revenue and what influences these
31
+ patterns?
32
+ - What is the role of Bank of America Corporation's management in relation to internal
33
+ control over financial reporting?
34
+ - source_sentence: For the year ended December 31, 2023, we recorded $3.6 million
35
+ of foreign currency transaction losses.
36
+ sentences:
37
+ - What was the total foreign currency transaction loss recorded for the year ended
38
+ December 31, 2023?
39
+ - What credit ratings were assigned to the company by Standard & Poor’s and Moody’s
40
+ at the end of 2022?
41
+ - What are The Home Depot's strategies for increasing diversity, equity, and inclusion?
42
+ - source_sentence: Gross margin contraction of 310 basis points primarily due to higher
43
+ product costs, reflecting higher input costs and inbound freight and logistics
44
+ costs and product mix, lower margins in NIKE Direct due to higher promotional
45
+ activity and a lower mix of full-price sales.
46
+ sentences:
47
+ - What fiduciary duties might a company have under ERISA?
48
+ - What were the significant contributors to the gross margin contraction and by
49
+ how many basis points did it contract?
50
+ - What typical reimbursement methods are used in the company's contracts with hospitals
51
+ for inpatient and outpatient services?
52
+ - source_sentence: As of December 31, 2023, we employed about 113,200 full-time persons
53
+ of whom approximately 62,400 were located outside the United States. In the United
54
+ States, we employed approximately 50,800 full-time persons.
55
+ sentences:
56
+ - What types of categories did eBay focus on in 2023, and how did they contribute
57
+ to the company's gross merchandise volume?
58
+ - What challenges do solar power system owners face with traditional string inverters?
59
+ - How many full-time employees were employed by the company as of December 31, 2023,
60
+ and how are they distributed geographically?
61
+ pipeline_tag: sentence-similarity
62
+ library_name: sentence-transformers
63
+ metrics:
64
+ - cosine_accuracy@1
65
+ - cosine_accuracy@3
66
+ - cosine_accuracy@5
67
+ - cosine_accuracy@10
68
+ - cosine_precision@1
69
+ - cosine_precision@3
70
+ - cosine_precision@5
71
+ - cosine_precision@10
72
+ - cosine_recall@1
73
+ - cosine_recall@3
74
+ - cosine_recall@5
75
+ - cosine_recall@10
76
+ - cosine_ndcg@10
77
+ - cosine_mrr@10
78
+ - cosine_map@100
79
+ model-index:
80
+ - name: BGE base Financial Matryoshka
81
+ results:
82
+ - task:
83
+ type: information-retrieval
84
+ name: Information Retrieval
85
+ dataset:
86
+ name: dim 384
87
+ type: dim_384
88
+ metrics:
89
+ - type: cosine_accuracy@1
90
+ value: 0.7157142857142857
91
+ name: Cosine Accuracy@1
92
+ - type: cosine_accuracy@3
93
+ value: 0.8485714285714285
94
+ name: Cosine Accuracy@3
95
+ - type: cosine_accuracy@5
96
+ value: 0.8742857142857143
97
+ name: Cosine Accuracy@5
98
+ - type: cosine_accuracy@10
99
+ value: 0.9171428571428571
100
+ name: Cosine Accuracy@10
101
+ - type: cosine_precision@1
102
+ value: 0.7157142857142857
103
+ name: Cosine Precision@1
104
+ - type: cosine_precision@3
105
+ value: 0.28285714285714286
106
+ name: Cosine Precision@3
107
+ - type: cosine_precision@5
108
+ value: 0.17485714285714282
109
+ name: Cosine Precision@5
110
+ - type: cosine_precision@10
111
+ value: 0.09171428571428569
112
+ name: Cosine Precision@10
113
+ - type: cosine_recall@1
114
+ value: 0.7157142857142857
115
+ name: Cosine Recall@1
116
+ - type: cosine_recall@3
117
+ value: 0.8485714285714285
118
+ name: Cosine Recall@3
119
+ - type: cosine_recall@5
120
+ value: 0.8742857142857143
121
+ name: Cosine Recall@5
122
+ - type: cosine_recall@10
123
+ value: 0.9171428571428571
124
+ name: Cosine Recall@10
125
+ - type: cosine_ndcg@10
126
+ value: 0.8198819637056249
127
+ name: Cosine Ndcg@10
128
+ - type: cosine_mrr@10
129
+ value: 0.7885175736961447
130
+ name: Cosine Mrr@10
131
+ - type: cosine_map@100
132
+ value: 0.7918328646013278
133
+ name: Cosine Map@100
134
+ - task:
135
+ type: information-retrieval
136
+ name: Information Retrieval
137
+ dataset:
138
+ name: dim 256
139
+ type: dim_256
140
+ metrics:
141
+ - type: cosine_accuracy@1
142
+ value: 0.7157142857142857
143
+ name: Cosine Accuracy@1
144
+ - type: cosine_accuracy@3
145
+ value: 0.8485714285714285
146
+ name: Cosine Accuracy@3
147
+ - type: cosine_accuracy@5
148
+ value: 0.8785714285714286
149
+ name: Cosine Accuracy@5
150
+ - type: cosine_accuracy@10
151
+ value: 0.9142857142857143
152
+ name: Cosine Accuracy@10
153
+ - type: cosine_precision@1
154
+ value: 0.7157142857142857
155
+ name: Cosine Precision@1
156
+ - type: cosine_precision@3
157
+ value: 0.28285714285714286
158
+ name: Cosine Precision@3
159
+ - type: cosine_precision@5
160
+ value: 0.17571428571428568
161
+ name: Cosine Precision@5
162
+ - type: cosine_precision@10
163
+ value: 0.09142857142857141
164
+ name: Cosine Precision@10
165
+ - type: cosine_recall@1
166
+ value: 0.7157142857142857
167
+ name: Cosine Recall@1
168
+ - type: cosine_recall@3
169
+ value: 0.8485714285714285
170
+ name: Cosine Recall@3
171
+ - type: cosine_recall@5
172
+ value: 0.8785714285714286
173
+ name: Cosine Recall@5
174
+ - type: cosine_recall@10
175
+ value: 0.9142857142857143
176
+ name: Cosine Recall@10
177
+ - type: cosine_ndcg@10
178
+ value: 0.8187635355625659
179
+ name: Cosine Ndcg@10
180
+ - type: cosine_mrr@10
181
+ value: 0.7878270975056689
182
+ name: Cosine Mrr@10
183
+ - type: cosine_map@100
184
+ value: 0.7911673353002208
185
+ name: Cosine Map@100
186
+ - task:
187
+ type: information-retrieval
188
+ name: Information Retrieval
189
+ dataset:
190
+ name: dim 128
191
+ type: dim_128
192
+ metrics:
193
+ - type: cosine_accuracy@1
194
+ value: 0.7057142857142857
195
+ name: Cosine Accuracy@1
196
+ - type: cosine_accuracy@3
197
+ value: 0.8371428571428572
198
+ name: Cosine Accuracy@3
199
+ - type: cosine_accuracy@5
200
+ value: 0.8642857142857143
201
+ name: Cosine Accuracy@5
202
+ - type: cosine_accuracy@10
203
+ value: 0.9085714285714286
204
+ name: Cosine Accuracy@10
205
+ - type: cosine_precision@1
206
+ value: 0.7057142857142857
207
+ name: Cosine Precision@1
208
+ - type: cosine_precision@3
209
+ value: 0.27904761904761904
210
+ name: Cosine Precision@3
211
+ - type: cosine_precision@5
212
+ value: 0.17285714285714285
213
+ name: Cosine Precision@5
214
+ - type: cosine_precision@10
215
+ value: 0.09085714285714284
216
+ name: Cosine Precision@10
217
+ - type: cosine_recall@1
218
+ value: 0.7057142857142857
219
+ name: Cosine Recall@1
220
+ - type: cosine_recall@3
221
+ value: 0.8371428571428572
222
+ name: Cosine Recall@3
223
+ - type: cosine_recall@5
224
+ value: 0.8642857142857143
225
+ name: Cosine Recall@5
226
+ - type: cosine_recall@10
227
+ value: 0.9085714285714286
228
+ name: Cosine Recall@10
229
+ - type: cosine_ndcg@10
230
+ value: 0.8090255333396114
231
+ name: Cosine Ndcg@10
232
+ - type: cosine_mrr@10
233
+ value: 0.777143424036281
234
+ name: Cosine Mrr@10
235
+ - type: cosine_map@100
236
+ value: 0.7807082191352167
237
+ name: Cosine Map@100
238
+ - task:
239
+ type: information-retrieval
240
+ name: Information Retrieval
241
+ dataset:
242
+ name: dim 64
243
+ type: dim_64
244
+ metrics:
245
+ - type: cosine_accuracy@1
246
+ value: 0.6728571428571428
247
+ name: Cosine Accuracy@1
248
+ - type: cosine_accuracy@3
249
+ value: 0.8128571428571428
250
+ name: Cosine Accuracy@3
251
+ - type: cosine_accuracy@5
252
+ value: 0.85
253
+ name: Cosine Accuracy@5
254
+ - type: cosine_accuracy@10
255
+ value: 0.8814285714285715
256
+ name: Cosine Accuracy@10
257
+ - type: cosine_precision@1
258
+ value: 0.6728571428571428
259
+ name: Cosine Precision@1
260
+ - type: cosine_precision@3
261
+ value: 0.27095238095238094
262
+ name: Cosine Precision@3
263
+ - type: cosine_precision@5
264
+ value: 0.16999999999999998
265
+ name: Cosine Precision@5
266
+ - type: cosine_precision@10
267
+ value: 0.08814285714285712
268
+ name: Cosine Precision@10
269
+ - type: cosine_recall@1
270
+ value: 0.6728571428571428
271
+ name: Cosine Recall@1
272
+ - type: cosine_recall@3
273
+ value: 0.8128571428571428
274
+ name: Cosine Recall@3
275
+ - type: cosine_recall@5
276
+ value: 0.85
277
+ name: Cosine Recall@5
278
+ - type: cosine_recall@10
279
+ value: 0.8814285714285715
280
+ name: Cosine Recall@10
281
+ - type: cosine_ndcg@10
282
+ value: 0.782934506961568
283
+ name: Cosine Ndcg@10
284
+ - type: cosine_mrr@10
285
+ value: 0.7507721088435368
286
+ name: Cosine Mrr@10
287
+ - type: cosine_map@100
288
+ value: 0.7551335288460688
289
+ name: Cosine Map@100
290
+ - task:
291
+ type: information-retrieval
292
+ name: Information Retrieval
293
+ dataset:
294
+ name: dim 32
295
+ type: dim_32
296
+ metrics:
297
+ - type: cosine_accuracy@1
298
+ value: 0.5957142857142858
299
+ name: Cosine Accuracy@1
300
+ - type: cosine_accuracy@3
301
+ value: 0.7414285714285714
302
+ name: Cosine Accuracy@3
303
+ - type: cosine_accuracy@5
304
+ value: 0.7828571428571428
305
+ name: Cosine Accuracy@5
306
+ - type: cosine_accuracy@10
307
+ value: 0.8314285714285714
308
+ name: Cosine Accuracy@10
309
+ - type: cosine_precision@1
310
+ value: 0.5957142857142858
311
+ name: Cosine Precision@1
312
+ - type: cosine_precision@3
313
+ value: 0.2471428571428571
314
+ name: Cosine Precision@3
315
+ - type: cosine_precision@5
316
+ value: 0.15657142857142856
317
+ name: Cosine Precision@5
318
+ - type: cosine_precision@10
319
+ value: 0.08314285714285713
320
+ name: Cosine Precision@10
321
+ - type: cosine_recall@1
322
+ value: 0.5957142857142858
323
+ name: Cosine Recall@1
324
+ - type: cosine_recall@3
325
+ value: 0.7414285714285714
326
+ name: Cosine Recall@3
327
+ - type: cosine_recall@5
328
+ value: 0.7828571428571428
329
+ name: Cosine Recall@5
330
+ - type: cosine_recall@10
331
+ value: 0.8314285714285714
332
+ name: Cosine Recall@10
333
+ - type: cosine_ndcg@10
334
+ value: 0.7158751864189645
335
+ name: Cosine Ndcg@10
336
+ - type: cosine_mrr@10
337
+ value: 0.6787687074829931
338
+ name: Cosine Mrr@10
339
+ - type: cosine_map@100
340
+ value: 0.6839925227099907
341
+ name: Cosine Map@100
342
+ ---
343
+
344
+ # BGE base Financial Matryoshka
345
+
346
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) on the json dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
347
+
348
+ ## Model Details
349
+
350
+ ### Model Description
351
+ - **Model Type:** Sentence Transformer
352
+ - **Base model:** [BAAI/bge-base-en-v1.5](https://huggingface.co/BAAI/bge-base-en-v1.5) <!-- at revision a5beb1e3e68b9ab74eb54cfd186867f64f240e1a -->
353
+ - **Maximum Sequence Length:** 512 tokens
354
+ - **Output Dimensionality:** 768 dimensions
355
+ - **Similarity Function:** Cosine Similarity
356
+ - **Training Dataset:**
357
+ - json
358
+ - **Language:** en
359
+ - **License:** apache-2.0
360
+
361
+ ### Model Sources
362
+
363
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
364
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
365
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
366
+
367
+ ### Full Model Architecture
368
+
369
+ ```
370
+ SentenceTransformer(
371
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': True}) with Transformer model: BertModel
372
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
373
+ (2): Normalize()
374
+ )
375
+ ```
376
+
377
+ ## Usage
378
+
379
+ ### Direct Usage (Sentence Transformers)
380
+
381
+ First install the Sentence Transformers library:
382
+
383
+ ```bash
384
+ pip install -U sentence-transformers
385
+ ```
386
+
387
+ Then you can load this model and run inference.
388
+ ```python
389
+ from sentence_transformers import SentenceTransformer
390
+
391
+ # Download from the 🤗 Hub
392
+ model = SentenceTransformer("moresearch/bge-base-financial-matryoshka")
393
+ # Run inference
394
+ sentences = [
395
+ 'As of December 31, 2023, we employed about 113,200 full-time persons of whom approximately 62,400 were located outside the United States. In the United States, we employed approximately 50,800 full-time persons.',
396
+ 'How many full-time employees were employed by the company as of December 31, 2023, and how are they distributed geographically?',
397
+ 'What challenges do solar power system owners face with traditional string inverters?',
398
+ ]
399
+ embeddings = model.encode(sentences)
400
+ print(embeddings.shape)
401
+ # [3, 768]
402
+
403
+ # Get the similarity scores for the embeddings
404
+ similarities = model.similarity(embeddings, embeddings)
405
+ print(similarities.shape)
406
+ # [3, 3]
407
+ ```
408
+
409
+ <!--
410
+ ### Direct Usage (Transformers)
411
+
412
+ <details><summary>Click to see the direct usage in Transformers</summary>
413
+
414
+ </details>
415
+ -->
416
+
417
+ <!--
418
+ ### Downstream Usage (Sentence Transformers)
419
+
420
+ You can finetune this model on your own dataset.
421
+
422
+ <details><summary>Click to expand</summary>
423
+
424
+ </details>
425
+ -->
426
+
427
+ <!--
428
+ ### Out-of-Scope Use
429
+
430
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
431
+ -->
432
+
433
+ ## Evaluation
434
+
435
+ ### Metrics
436
+
437
+ #### Information Retrieval
438
+
439
+ * Datasets: `dim_384`, `dim_256`, `dim_128`, `dim_64` and `dim_32`
440
+ * Evaluated with [<code>InformationRetrievalEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.InformationRetrievalEvaluator)
441
+
442
+ | Metric | dim_384 | dim_256 | dim_128 | dim_64 | dim_32 |
443
+ |:--------------------|:-----------|:-----------|:----------|:-----------|:-----------|
444
+ | cosine_accuracy@1 | 0.7157 | 0.7157 | 0.7057 | 0.6729 | 0.5957 |
445
+ | cosine_accuracy@3 | 0.8486 | 0.8486 | 0.8371 | 0.8129 | 0.7414 |
446
+ | cosine_accuracy@5 | 0.8743 | 0.8786 | 0.8643 | 0.85 | 0.7829 |
447
+ | cosine_accuracy@10 | 0.9171 | 0.9143 | 0.9086 | 0.8814 | 0.8314 |
448
+ | cosine_precision@1 | 0.7157 | 0.7157 | 0.7057 | 0.6729 | 0.5957 |
449
+ | cosine_precision@3 | 0.2829 | 0.2829 | 0.279 | 0.271 | 0.2471 |
450
+ | cosine_precision@5 | 0.1749 | 0.1757 | 0.1729 | 0.17 | 0.1566 |
451
+ | cosine_precision@10 | 0.0917 | 0.0914 | 0.0909 | 0.0881 | 0.0831 |
452
+ | cosine_recall@1 | 0.7157 | 0.7157 | 0.7057 | 0.6729 | 0.5957 |
453
+ | cosine_recall@3 | 0.8486 | 0.8486 | 0.8371 | 0.8129 | 0.7414 |
454
+ | cosine_recall@5 | 0.8743 | 0.8786 | 0.8643 | 0.85 | 0.7829 |
455
+ | cosine_recall@10 | 0.9171 | 0.9143 | 0.9086 | 0.8814 | 0.8314 |
456
+ | **cosine_ndcg@10** | **0.8199** | **0.8188** | **0.809** | **0.7829** | **0.7159** |
457
+ | cosine_mrr@10 | 0.7885 | 0.7878 | 0.7771 | 0.7508 | 0.6788 |
458
+ | cosine_map@100 | 0.7918 | 0.7912 | 0.7807 | 0.7551 | 0.684 |
459
+
460
+ <!--
461
+ ## Bias, Risks and Limitations
462
+
463
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
464
+ -->
465
+
466
+ <!--
467
+ ### Recommendations
468
+
469
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
470
+ -->
471
+
472
+ ## Training Details
473
+
474
+ ### Training Dataset
475
+
476
+ #### json
477
+
478
+ * Dataset: json
479
+ * Size: 6,300 training samples
480
+ * Columns: <code>positive</code> and <code>anchor</code>
481
+ * Approximate statistics based on the first 1000 samples:
482
+ | | positive | anchor |
483
+ |:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
484
+ | type | string | string |
485
+ | details | <ul><li>min: 7 tokens</li><li>mean: 45.87 tokens</li><li>max: 288 tokens</li></ul> | <ul><li>min: 2 tokens</li><li>mean: 20.32 tokens</li><li>max: 41 tokens</li></ul> |
486
+ * Samples:
487
+ | positive | anchor |
488
+ |:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------------------------------------------------------------------------------------------------------------------------|
489
+ | <code>The company maintains a revolving credit facility that, unless extended, terminates on July 6, 2026.</code> | <code>What is the expiration date of the company's revolving credit facility, unless extended?</code> |
490
+ | <code>The management of Bank of America Corporation is responsible for establishing and maintaining adequate internal control over financial reporting. The Corporation’s internal control over financial reporting is designed to provide reasonable assurance about the reliability of financial reporting and the preparation of financial statements in accordance with accounting principles generally accepted in the United States of America. Management's responsibilities include maintaining records that, in reasonable detail, accurately and fairly reflect the transactions and dispositions of the assets of the Corporation; ensuring that transactions are recorded as necessary for the preparation of financial statements; and preventing or detecting unauthorized acquisition, use, or disposition of the Corporation’s assets that could have a material effect on the financial statements.</code> | <code>What is the role of Bank of America Corporation's management in relation to internal control over financial reporting?</code> |
491
+ | <code>In 2020, Gilead implemented multiple programs to train managers on inclusion and diversity topics and created strategies and initiatives focused on attracting, developing and retaining diverse talent and driving an inclusive culture in our workplace.</code> | <code>What initiatives has Gilead undertaken to promote workplace diversity?</code> |
492
+ * Loss: [<code>MatryoshkaLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#matryoshkaloss) with these parameters:
493
+ ```json
494
+ {
495
+ "loss": "MultipleNegativesRankingLoss",
496
+ "matryoshka_dims": [
497
+ 768,
498
+ 512,
499
+ 256,
500
+ 128,
501
+ 64
502
+ ],
503
+ "matryoshka_weights": [
504
+ 1,
505
+ 1,
506
+ 1,
507
+ 1,
508
+ 1
509
+ ],
510
+ "n_dims_per_step": -1
511
+ }
512
+ ```
513
+
514
+ ### Training Hyperparameters
515
+ #### Non-Default Hyperparameters
516
+
517
+ - `eval_strategy`: epoch
518
+ - `per_device_train_batch_size`: 32
519
+ - `per_device_eval_batch_size`: 16
520
+ - `gradient_accumulation_steps`: 16
521
+ - `learning_rate`: 2e-05
522
+ - `num_train_epochs`: 4
523
+ - `lr_scheduler_type`: cosine
524
+ - `warmup_ratio`: 0.1
525
+ - `bf16`: True
526
+ - `tf32`: False
527
+ - `load_best_model_at_end`: True
528
+ - `optim`: adamw_torch_fused
529
+ - `batch_sampler`: no_duplicates
530
+
531
+ #### All Hyperparameters
532
+ <details><summary>Click to expand</summary>
533
+
534
+ - `overwrite_output_dir`: False
535
+ - `do_predict`: False
536
+ - `eval_strategy`: epoch
537
+ - `prediction_loss_only`: True
538
+ - `per_device_train_batch_size`: 32
539
+ - `per_device_eval_batch_size`: 16
540
+ - `per_gpu_train_batch_size`: None
541
+ - `per_gpu_eval_batch_size`: None
542
+ - `gradient_accumulation_steps`: 16
543
+ - `eval_accumulation_steps`: None
544
+ - `torch_empty_cache_steps`: None
545
+ - `learning_rate`: 2e-05
546
+ - `weight_decay`: 0.0
547
+ - `adam_beta1`: 0.9
548
+ - `adam_beta2`: 0.999
549
+ - `adam_epsilon`: 1e-08
550
+ - `max_grad_norm`: 1.0
551
+ - `num_train_epochs`: 4
552
+ - `max_steps`: -1
553
+ - `lr_scheduler_type`: cosine
554
+ - `lr_scheduler_kwargs`: {}
555
+ - `warmup_ratio`: 0.1
556
+ - `warmup_steps`: 0
557
+ - `log_level`: passive
558
+ - `log_level_replica`: warning
559
+ - `log_on_each_node`: True
560
+ - `logging_nan_inf_filter`: True
561
+ - `save_safetensors`: True
562
+ - `save_on_each_node`: False
563
+ - `save_only_model`: False
564
+ - `restore_callback_states_from_checkpoint`: False
565
+ - `no_cuda`: False
566
+ - `use_cpu`: False
567
+ - `use_mps_device`: False
568
+ - `seed`: 42
569
+ - `data_seed`: None
570
+ - `jit_mode_eval`: False
571
+ - `use_ipex`: False
572
+ - `bf16`: True
573
+ - `fp16`: False
574
+ - `fp16_opt_level`: O1
575
+ - `half_precision_backend`: auto
576
+ - `bf16_full_eval`: False
577
+ - `fp16_full_eval`: False
578
+ - `tf32`: False
579
+ - `local_rank`: 0
580
+ - `ddp_backend`: None
581
+ - `tpu_num_cores`: None
582
+ - `tpu_metrics_debug`: False
583
+ - `debug`: []
584
+ - `dataloader_drop_last`: False
585
+ - `dataloader_num_workers`: 0
586
+ - `dataloader_prefetch_factor`: None
587
+ - `past_index`: -1
588
+ - `disable_tqdm`: False
589
+ - `remove_unused_columns`: True
590
+ - `label_names`: None
591
+ - `load_best_model_at_end`: True
592
+ - `ignore_data_skip`: False
593
+ - `fsdp`: []
594
+ - `fsdp_min_num_params`: 0
595
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
596
+ - `fsdp_transformer_layer_cls_to_wrap`: None
597
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
598
+ - `deepspeed`: None
599
+ - `label_smoothing_factor`: 0.0
600
+ - `optim`: adamw_torch_fused
601
+ - `optim_args`: None
602
+ - `adafactor`: False
603
+ - `group_by_length`: False
604
+ - `length_column_name`: length
605
+ - `ddp_find_unused_parameters`: None
606
+ - `ddp_bucket_cap_mb`: None
607
+ - `ddp_broadcast_buffers`: False
608
+ - `dataloader_pin_memory`: True
609
+ - `dataloader_persistent_workers`: False
610
+ - `skip_memory_metrics`: True
611
+ - `use_legacy_prediction_loop`: False
612
+ - `push_to_hub`: False
613
+ - `resume_from_checkpoint`: None
614
+ - `hub_model_id`: None
615
+ - `hub_strategy`: every_save
616
+ - `hub_private_repo`: False
617
+ - `hub_always_push`: False
618
+ - `gradient_checkpointing`: False
619
+ - `gradient_checkpointing_kwargs`: None
620
+ - `include_inputs_for_metrics`: False
621
+ - `include_for_metrics`: []
622
+ - `eval_do_concat_batches`: True
623
+ - `fp16_backend`: auto
624
+ - `push_to_hub_model_id`: None
625
+ - `push_to_hub_organization`: None
626
+ - `mp_parameters`:
627
+ - `auto_find_batch_size`: False
628
+ - `full_determinism`: False
629
+ - `torchdynamo`: None
630
+ - `ray_scope`: last
631
+ - `ddp_timeout`: 1800
632
+ - `torch_compile`: False
633
+ - `torch_compile_backend`: None
634
+ - `torch_compile_mode`: None
635
+ - `dispatch_batches`: None
636
+ - `split_batches`: None
637
+ - `include_tokens_per_second`: False
638
+ - `include_num_input_tokens_seen`: False
639
+ - `neftune_noise_alpha`: None
640
+ - `optim_target_modules`: None
641
+ - `batch_eval_metrics`: False
642
+ - `eval_on_start`: False
643
+ - `use_liger_kernel`: False
644
+ - `eval_use_gather_object`: False
645
+ - `average_tokens_across_devices`: False
646
+ - `prompts`: None
647
+ - `batch_sampler`: no_duplicates
648
+ - `multi_dataset_batch_sampler`: proportional
649
+
650
+ </details>
651
+
652
+ ### Training Logs
653
+ | Epoch | Step | Training Loss | dim_384_cosine_ndcg@10 | dim_256_cosine_ndcg@10 | dim_128_cosine_ndcg@10 | dim_64_cosine_ndcg@10 | dim_32_cosine_ndcg@10 |
654
+ |:----------:|:------:|:-------------:|:----------------------:|:----------------------:|:----------------------:|:---------------------:|:---------------------:|
655
+ | 0.8122 | 10 | 1.5733 | - | - | - | - | - |
656
+ | 0.9746 | 12 | - | 0.8075 | 0.8045 | 0.7876 | 0.7643 | 0.6844 |
657
+ | 1.6244 | 20 | 0.6549 | - | - | - | - | - |
658
+ | 1.9492 | 24 | - | 0.8188 | 0.8169 | 0.8035 | 0.7789 | 0.7107 |
659
+ | 2.4365 | 30 | 0.4373 | - | - | - | - | - |
660
+ | 2.9239 | 36 | - | 0.8210 | 0.8183 | 0.8079 | 0.7835 | 0.7161 |
661
+ | 3.2487 | 40 | 0.3951 | - | - | - | - | - |
662
+ | **3.8985** | **48** | **-** | **0.8199** | **0.8188** | **0.809** | **0.7829** | **0.7159** |
663
+
664
+ * The bold row denotes the saved checkpoint.
665
+
666
+ ### Framework Versions
667
+ - Python: 3.10.12
668
+ - Sentence Transformers: 3.3.1
669
+ - Transformers: 4.46.3
670
+ - PyTorch: 2.5.1+cu124
671
+ - Accelerate: 1.1.1
672
+ - Datasets: 3.1.0
673
+ - Tokenizers: 0.20.3
674
+
675
+ ## Citation
676
+
677
+ ### BibTeX
678
+
679
+ #### Sentence Transformers
680
+ ```bibtex
681
+ @inproceedings{reimers-2019-sentence-bert,
682
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
683
+ author = "Reimers, Nils and Gurevych, Iryna",
684
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
685
+ month = "11",
686
+ year = "2019",
687
+ publisher = "Association for Computational Linguistics",
688
+ url = "https://arxiv.org/abs/1908.10084",
689
+ }
690
+ ```
691
+
692
+ #### MatryoshkaLoss
693
+ ```bibtex
694
+ @misc{kusupati2024matryoshka,
695
+ title={Matryoshka Representation Learning},
696
+ author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi},
697
+ year={2024},
698
+ eprint={2205.13147},
699
+ archivePrefix={arXiv},
700
+ primaryClass={cs.LG}
701
+ }
702
+ ```
703
+
704
+ #### MultipleNegativesRankingLoss
705
+ ```bibtex
706
+ @misc{henderson2017efficient,
707
+ title={Efficient Natural Language Response Suggestion for Smart Reply},
708
+ author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
709
+ year={2017},
710
+ eprint={1705.00652},
711
+ archivePrefix={arXiv},
712
+ primaryClass={cs.CL}
713
+ }
714
+ ```
715
+
716
+ <!--
717
+ ## Glossary
718
+
719
+ *Clearly define terms in order to be accessible across audiences.*
720
+ -->
721
+
722
+ <!--
723
+ ## Model Card Authors
724
+
725
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
726
+ -->
727
+
728
+ <!--
729
+ ## Model Card Contact
730
+
731
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
732
+ -->
config.json ADDED
@@ -0,0 +1,32 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "BAAI/bge-base-en-v1.5",
3
+ "architectures": [
4
+ "BertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.1,
7
+ "classifier_dropout": null,
8
+ "gradient_checkpointing": false,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 768,
12
+ "id2label": {
13
+ "0": "LABEL_0"
14
+ },
15
+ "initializer_range": 0.02,
16
+ "intermediate_size": 3072,
17
+ "label2id": {
18
+ "LABEL_0": 0
19
+ },
20
+ "layer_norm_eps": 1e-12,
21
+ "max_position_embeddings": 512,
22
+ "model_type": "bert",
23
+ "num_attention_heads": 12,
24
+ "num_hidden_layers": 12,
25
+ "pad_token_id": 0,
26
+ "position_embedding_type": "absolute",
27
+ "torch_dtype": "float32",
28
+ "transformers_version": "4.46.3",
29
+ "type_vocab_size": 2,
30
+ "use_cache": true,
31
+ "vocab_size": 30522
32
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.3.1",
4
+ "transformers": "4.46.3",
5
+ "pytorch": "2.5.1+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b4aba4fa0bf9af5723fafd1f2374838bf0f8d47ca1135f936db56e099d3ea4eb
3
+ size 437951328
modules.json ADDED
@@ -0,0 +1,20 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ },
14
+ {
15
+ "idx": 2,
16
+ "name": "2",
17
+ "path": "2_Normalize",
18
+ "type": "sentence_transformers.models.Normalize"
19
+ }
20
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": true
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,57 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "never_split": null,
51
+ "pad_token": "[PAD]",
52
+ "sep_token": "[SEP]",
53
+ "strip_accents": null,
54
+ "tokenize_chinese_chars": true,
55
+ "tokenizer_class": "BertTokenizer",
56
+ "unk_token": "[UNK]"
57
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff