Automatic Speech Recognition
Transformers
TensorBoard
Safetensors
Korean
whisper
morish/kresp_speech_87_48278_150000
morish/open_communication_109_48652_150000
morish/senior_kspeech_107_150000
morish/telemedicine_208_150000_200000
morish/welfare_470_150000_200000
whisper-2024-09-06
Generated from Trainer
Inference Endpoints
library_name: transformers | |
language: | |
- ko | |
license: apache-2.0 | |
base_model: morish/whisper-medium-ko-v0_1_1 | |
tags: | |
- morish/kresp_speech_87_48278_150000 | |
- morish/open_communication_109_48652_150000 | |
- morish/senior_kspeech_107_150000 | |
- morish/telemedicine_208_150000_200000 | |
- morish/welfare_470_150000_200000 | |
- whisper-2024-09-06 | |
- generated_from_trainer | |
model-index: | |
- name: whisper-ko-finetune | |
results: [] | |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You | |
should probably proofread and complete it, then remove this comment. --> | |
# whisper-ko-finetune | |
This model is a fine-tuned version of [morish/whisper-medium-ko-v0_1_1](https://huggingface.co/morish/whisper-medium-ko-v0_1_1) on the None dataset. | |
It achieves the following results on the evaluation set: | |
- Loss: 0.0829 | |
- Cer: 2.4784 | |
## Model description | |
More information needed | |
## Intended uses & limitations | |
More information needed | |
## Training and evaluation data | |
More information needed | |
## Training procedure | |
### Training hyperparameters | |
The following hyperparameters were used during training: | |
- learning_rate: 1e-06 | |
- train_batch_size: 32 | |
- eval_batch_size: 16 | |
- seed: 42 | |
- gradient_accumulation_steps: 2 | |
- total_train_batch_size: 64 | |
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 | |
- lr_scheduler_type: linear | |
- lr_scheduler_warmup_ratio: 0.01 | |
- num_epochs: 1 | |
- mixed_precision_training: Native AMP | |
### Training results | |
| Training Loss | Epoch | Step | Validation Loss | Cer | | |
|:-------------:|:------:|:----:|:---------------:|:------:| | |
| 0.0868 | 0.2385 | 500 | 0.0859 | 2.5607 | | |
| 0.0856 | 0.4770 | 1000 | 0.0843 | 2.5300 | | |
| 0.0875 | 0.7155 | 1500 | 0.0833 | 2.4804 | | |
| 0.0815 | 0.9540 | 2000 | 0.0829 | 2.4784 | | |
### Framework versions | |
- Transformers 4.44.2 | |
- Pytorch 2.3.1+cu121 | |
- Datasets 2.21.0 | |
- Tokenizers 0.19.1 | |